
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 61GP
(a)
To determine
The magnetic field at points x along the line joining their centers.
(b)
To determine
Show that the field midway between the coils is particularly uniform by showing that
(c)
To determine
The field at the midpoint between the coils
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I. Pushing on a File Cabinet
Bob has been asked to push a heavy file cabinet down the
hall to another office. It's not on rollers, so there is a lot
of friction. At time t = 0 seconds, he starts pushing it
from rest with increasing force until it starts to move at t
= 2 seconds. He pushes the file cabinet down the hall
with varying amounts of force. The velocity versus time
graph of the cabinet is shown below.
A. On the graphs provided below,
1. draw the net force vs. time that would produce this velocity graph;
2. draw the friction force vs. time for this motion;
3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph
have been drawn for you).
Velocity (m/s)
Applied Force (N)
Friction Force (N)
Net Force (N)
A
-m
B
-U
time
(s)
D
time
(s)
time
(s)
time
(s)
answer it
Please draw a sketch and a FBD
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 28.1 - In Example 2510 we saw that a typical lightning...Ch. 28.1 - Suppose both I1 and I2 point into the page in Fig....Ch. 28.4 - Prob. 1CECh. 28 - The magnetic field due to current in wires in your...Ch. 28 - Compare and contrast the magnetic field due to a...Ch. 28 - Two insulated long wires carrying equal currents I...Ch. 28 - Prob. 4QCh. 28 - A horizontal current-carrying wire, free to move...Ch. 28 - (a) Write Ampres law for a path that surrounds...Ch. 28 - Suppose the cylindrical conductor of Fig. 2811a...
Ch. 28 - Explain why a field such as that shown in Fig....Ch. 28 - Prob. 9QCh. 28 - Use the Biot-Savart law to show that the field of...Ch. 28 - Prob. 11QCh. 28 - Why does twisting the lead-in wires to electrical...Ch. 28 - Compare the Biot-Savart law with Coulombs law....Ch. 28 - How might you define or determine the magnetic...Ch. 28 - How might you measure the magnetic dipole moment...Ch. 28 - A type of magnetic switch similar to a solenoid is...Ch. 28 - A heavy magnet attracts, from rest, a heavy block...Ch. 28 - Will a magnet attract any metallic object, such as...Ch. 28 - An unmagnetized nail will not attract an...Ch. 28 - Prob. 20QCh. 28 - Prob. 21QCh. 28 - Prob. 22QCh. 28 - Prob. 23QCh. 28 - Two iron bars attract each other no matter which...Ch. 28 - Describe the magnetization curve for (a) a...Ch. 28 - Prob. 26QCh. 28 - (I) Jumper cables used to start a stalled vehicle...Ch. 28 - (I) If an electric wire is allowed to produce a...Ch. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - (II) An experiment on the Earths magnetic field is...Ch. 28 - Prob. 7PCh. 28 - At the location of the compass, the magnetic field...Ch. 28 - (II) A long horizontal wire carries 24.0 A of...Ch. 28 - (II) A straight stream of protons passes a given...Ch. 28 - (II) Determine the magnetic field midway between...Ch. 28 - (II) Two straight parallel wires are separated by...Ch. 28 - (II) Two long straight wires each carry a current...Ch. 28 - (II) A long pair of insulated wires serves to...Ch. 28 - (II) A third wire is placed in the plane of the...Ch. 28 - (II) A power line carries a current of 95 A west...Ch. 28 - (II) A compass needle points 28 E of N outdoors....Ch. 28 - Prob. 18PCh. 28 - (II) Let two long parallel wires, a distance d...Ch. 28 - (II) Repeat Problem 19 if the wire at x = 0...Ch. 28 - (II) Two long wires are oriented so that they are...Ch. 28 - (II) Two long parallel wires 8.20 cm apart carry...Ch. 28 - (III) A very long flat conducting strip of width d...Ch. 28 - (III) A triangular loop of side length a carries a...Ch. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - (I) A 2.5-mm-diameter copper wire carries a 33-A...Ch. 28 - (II) A toroid (Fig. 2817) has a 50.0-cm inner...Ch. 28 - Prob. 29PCh. 28 - (II) (a) Use Eq. 281, and the vector nature of B,...Ch. 28 - (II) A coaxial cable consists of a solid inner...Ch. 28 - (III) Suppose the current in the coaxial cable of...Ch. 28 - Prob. 33PCh. 28 - (II) A wire, in a plane, has the shape shown in...Ch. 28 - (II) A circular conducting ring of radius R is...Ch. 28 - (II) A small loop of wire of radius 1.8 cm is...Ch. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - (III) Use the result of Problem 41 to find the...Ch. 28 - (III) A wire is bent into the shape of a regular...Ch. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - (III) A square loop of wire, of side d, carries a...Ch. 28 - (II) An iron atom has a magnetic dipole moment of...Ch. 28 - (I) The following are some values of B and B0 for...Ch. 28 - (I) A large thin toroid has 285 loops of wire per...Ch. 28 - (II) An iron-core solenoid is 38 cm long and 1.8...Ch. 28 - Three long parallel wires are 3.5 cm from one...Ch. 28 - Prob. 52GPCh. 28 - Prob. 53GPCh. 28 - Prob. 54GPCh. 28 - Two long straight parallel wires are 15 cm apart....Ch. 28 - A rectangular loop of wire carries a 2.0-A current...Ch. 28 - Prob. 57GPCh. 28 - A long horizontal wire carries a current of 48 A....Ch. 28 - A square loop of wire, of side d, carries a...Ch. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - For two long parallel wires separated by a...Ch. 28 - Near the Earths poles the magnetic field is about...Ch. 28 - A 175-g model airplane charged to 18.0 mC and...Ch. 28 - Suppose that an electromagnet uses a coil 2.0 m in...Ch. 28 - Four hour long straight parallel wires located at...Ch. 28 - Prob. 67GPCh. 28 - A thin 12-cm-long solenoid has a total of 420...Ch. 28 - A 550-turn solenoid is 15 cm long. The current...Ch. 28 - Prob. 70GPCh. 28 - Prob. 71GPCh. 28 - Prob. 72GPCh. 28 - Prob. 73GPCh. 28 - Prob. 74GPCh. 28 - (II) A circular current loop of radius 15 cm...Ch. 28 - (III) A set of Helmholtz coils (see Problem 61,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forwardFor an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forward
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning