
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 17P
(II) A compass needle points 28° E of N outdoors. However, when it is placed 12.0 cm to the east of a vertical wire inside a building, it points 55° E of N. What is the magnitude and direction of the current in the wire? The Earth’s field there is 0.50 × 10−4 T and is horizontal.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What is the critical angle fir the light travelling from the crown glass(n=1.52) into the air(n=1.00)?
No chatgpt pls will upvote
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
Write AK + AU + AE int
= W+Q + TMW
+
TMT + TET + TER for the car-track-Earth system and solve for…
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 28.1 - In Example 2510 we saw that a typical lightning...Ch. 28.1 - Suppose both I1 and I2 point into the page in Fig....Ch. 28.4 - Prob. 1CECh. 28 - The magnetic field due to current in wires in your...Ch. 28 - Compare and contrast the magnetic field due to a...Ch. 28 - Two insulated long wires carrying equal currents I...Ch. 28 - Prob. 4QCh. 28 - A horizontal current-carrying wire, free to move...Ch. 28 - (a) Write Ampres law for a path that surrounds...Ch. 28 - Suppose the cylindrical conductor of Fig. 2811a...
Ch. 28 - Explain why a field such as that shown in Fig....Ch. 28 - Prob. 9QCh. 28 - Use the Biot-Savart law to show that the field of...Ch. 28 - Prob. 11QCh. 28 - Why does twisting the lead-in wires to electrical...Ch. 28 - Compare the Biot-Savart law with Coulombs law....Ch. 28 - How might you define or determine the magnetic...Ch. 28 - How might you measure the magnetic dipole moment...Ch. 28 - A type of magnetic switch similar to a solenoid is...Ch. 28 - A heavy magnet attracts, from rest, a heavy block...Ch. 28 - Will a magnet attract any metallic object, such as...Ch. 28 - An unmagnetized nail will not attract an...Ch. 28 - Prob. 20QCh. 28 - Prob. 21QCh. 28 - Prob. 22QCh. 28 - Prob. 23QCh. 28 - Two iron bars attract each other no matter which...Ch. 28 - Describe the magnetization curve for (a) a...Ch. 28 - Prob. 26QCh. 28 - (I) Jumper cables used to start a stalled vehicle...Ch. 28 - (I) If an electric wire is allowed to produce a...Ch. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - (II) An experiment on the Earths magnetic field is...Ch. 28 - Prob. 7PCh. 28 - At the location of the compass, the magnetic field...Ch. 28 - (II) A long horizontal wire carries 24.0 A of...Ch. 28 - (II) A straight stream of protons passes a given...Ch. 28 - (II) Determine the magnetic field midway between...Ch. 28 - (II) Two straight parallel wires are separated by...Ch. 28 - (II) Two long straight wires each carry a current...Ch. 28 - (II) A long pair of insulated wires serves to...Ch. 28 - (II) A third wire is placed in the plane of the...Ch. 28 - (II) A power line carries a current of 95 A west...Ch. 28 - (II) A compass needle points 28 E of N outdoors....Ch. 28 - Prob. 18PCh. 28 - (II) Let two long parallel wires, a distance d...Ch. 28 - (II) Repeat Problem 19 if the wire at x = 0...Ch. 28 - (II) Two long wires are oriented so that they are...Ch. 28 - (II) Two long parallel wires 8.20 cm apart carry...Ch. 28 - (III) A very long flat conducting strip of width d...Ch. 28 - (III) A triangular loop of side length a carries a...Ch. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - (I) A 2.5-mm-diameter copper wire carries a 33-A...Ch. 28 - (II) A toroid (Fig. 2817) has a 50.0-cm inner...Ch. 28 - Prob. 29PCh. 28 - (II) (a) Use Eq. 281, and the vector nature of B,...Ch. 28 - (II) A coaxial cable consists of a solid inner...Ch. 28 - (III) Suppose the current in the coaxial cable of...Ch. 28 - Prob. 33PCh. 28 - (II) A wire, in a plane, has the shape shown in...Ch. 28 - (II) A circular conducting ring of radius R is...Ch. 28 - (II) A small loop of wire of radius 1.8 cm is...Ch. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - (III) Use the result of Problem 41 to find the...Ch. 28 - (III) A wire is bent into the shape of a regular...Ch. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - (III) A square loop of wire, of side d, carries a...Ch. 28 - (II) An iron atom has a magnetic dipole moment of...Ch. 28 - (I) The following are some values of B and B0 for...Ch. 28 - (I) A large thin toroid has 285 loops of wire per...Ch. 28 - (II) An iron-core solenoid is 38 cm long and 1.8...Ch. 28 - Three long parallel wires are 3.5 cm from one...Ch. 28 - Prob. 52GPCh. 28 - Prob. 53GPCh. 28 - Prob. 54GPCh. 28 - Two long straight parallel wires are 15 cm apart....Ch. 28 - A rectangular loop of wire carries a 2.0-A current...Ch. 28 - Prob. 57GPCh. 28 - A long horizontal wire carries a current of 48 A....Ch. 28 - A square loop of wire, of side d, carries a...Ch. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - For two long parallel wires separated by a...Ch. 28 - Near the Earths poles the magnetic field is about...Ch. 28 - A 175-g model airplane charged to 18.0 mC and...Ch. 28 - Suppose that an electromagnet uses a coil 2.0 m in...Ch. 28 - Four hour long straight parallel wires located at...Ch. 28 - Prob. 67GPCh. 28 - A thin 12-cm-long solenoid has a total of 420...Ch. 28 - A 550-turn solenoid is 15 cm long. The current...Ch. 28 - Prob. 70GPCh. 28 - Prob. 71GPCh. 28 - Prob. 72GPCh. 28 - Prob. 73GPCh. 28 - Prob. 74GPCh. 28 - (II) A circular current loop of radius 15 cm...Ch. 28 - (III) A set of Helmholtz coils (see Problem 61,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
29. For the reaction
determine the expression for the rate of the reaction in terms of the change in concentr...
Chemistry: Structure and Properties (2nd Edition)
89. Classify each chemical reaction as a synthesis, decomposition, single-displacement, or double-displacement ...
Introductory Chemistry (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Researchers cross a corn plant that is pure - breeding forthe dominant traits colored aleurone (C1), full kerne...
Genetic Analysis: An Integrated Approach (3rd Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- = 12 kg, and m3 Three objects with masses m₁ = 3.8 kg, m₂ find the speed of m3 after it moves down 4.0 m. m/s 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to m m2 m3 iarrow_forwardThree objects with masses m₁ = 3.8 kg, m₂ = 12 kg, and m 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to find the speed of m¸ after it moves down 4.0 m. m/s m m2 mgarrow_forwardIn order for Jane to return to base camp, she needs to swing across a river of width D that is filled with alligators. She must swing into a wind exerting constant horizontal force F, F = 110 N, L = 40.0 m, 0 = 50.0°, and her mass to be 50.0 kg. Wind →F Tarzan! Jane (a) with what minimum speed (in m/s) must Jane begin her swing to just make it to the other side? (If Jane can make it across with zero initial velocity, enter 0.) m/s on a vine having length L and initially making an angle with the vertical (see below figure). Take D = 48.0 m, (b) Shortly after Jane's arrival, Tarzan and Jane decide to swing back across the river (simultaneously). With what minimum speed (in m/s) must they begin their swing? Assume that Tarzan has a mass of 80.0 kg. m/sarrow_forward
- R=2.00 12V 2.00 4.00 4.002 What is the current in one of the 4.0 Q resistors? An isolated point charge q is located at point X. Two other points Y and Z are such that YZ2 XY. Y X What is (electric field at Y)/(electric field at Z)?arrow_forwardTwo objects (m₁ = 4.75 kg and m₂ 2.80 kg) are connected by a light string passing over a light, frictionless pulley as in the figure below. The 4.75-kg object is released from rest at a point h = 4.00 m above the table mg m (a) Determine the speed of each object when the two pass each other. m/s (b) Determine the speed of each object at the moment the 4.75-kg object hits the table. m/s (c) How much higher does the 2.80-kg object travel after the 4.75-kg object hits the table? marrow_forwardA cell of negligible internal resistance is connected to three identical resistors. The current in the cell is 3.0 A. The resistors are now arranged in series. What is the new current in the cell?arrow_forward
- A negatively charged sphere is falling through a magnetic field. north pole of magnet direction of motion south pole of magnet What is the direction of the magnetic force acting on the sphere?arrow_forwardElectrons in a conductor are moving down the page. A proton outside the wire is moving to the right. What is the direction of the magnetic force acting on the proton?arrow_forwardWhat is the resistance of an ideal voltmeter and the resistance of an ideal ammeter? Resistance of an ideal voltmeter Resistance of an ideal ammeter infinite A. zero B. zero zero C. infinite infinite D. infinite zeroarrow_forward
- variable resistor with a resistance range of 0 to 6.0 KQ is connected in series with two resistors of fixed value 6.0 KQ. The cell in the circuit has an emf of 18 V and a negligible internal resistance. 18 V X Y 6.0 ΚΩ 6.0 ΚΩ 0 - 6.0 ΚΩ What is the maximum range of potential difference that can be observed between X and Y?arrow_forwardA positive point charge of magnitude 1.0 μC and a point charge q are separated by a distance d. electron 1.0 με An electron is placed at a distance d from the +1.0 μC charge. The electric force on the electron is zero. What is q?arrow_forwardTwo point charges of +4q and -q are placed a fixed distance apart. Where is the electric field strength equal to zero? B. +49 D. A network of three resistors is connected to a cell of emf 12V and internal resistance R of 2.0 Q as shown.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning


Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY