Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 45P
To determine
The magnetic field
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 28.1 - In Example 2510 we saw that a typical lightning...Ch. 28.1 - Suppose both I1 and I2 point into the page in Fig....Ch. 28.4 - Prob. 1CECh. 28 - The magnetic field due to current in wires in your...Ch. 28 - Compare and contrast the magnetic field due to a...Ch. 28 - Two insulated long wires carrying equal currents I...Ch. 28 - Prob. 4QCh. 28 - A horizontal current-carrying wire, free to move...Ch. 28 - (a) Write Ampres law for a path that surrounds...Ch. 28 - Suppose the cylindrical conductor of Fig. 2811a...
Ch. 28 - Explain why a field such as that shown in Fig....Ch. 28 - Prob. 9QCh. 28 - Use the Biot-Savart law to show that the field of...Ch. 28 - Prob. 11QCh. 28 - Why does twisting the lead-in wires to electrical...Ch. 28 - Compare the Biot-Savart law with Coulombs law....Ch. 28 - How might you define or determine the magnetic...Ch. 28 - How might you measure the magnetic dipole moment...Ch. 28 - A type of magnetic switch similar to a solenoid is...Ch. 28 - A heavy magnet attracts, from rest, a heavy block...Ch. 28 - Will a magnet attract any metallic object, such as...Ch. 28 - An unmagnetized nail will not attract an...Ch. 28 - Prob. 20QCh. 28 - Prob. 21QCh. 28 - Prob. 22QCh. 28 - Prob. 23QCh. 28 - Two iron bars attract each other no matter which...Ch. 28 - Describe the magnetization curve for (a) a...Ch. 28 - Prob. 26QCh. 28 - (I) Jumper cables used to start a stalled vehicle...Ch. 28 - (I) If an electric wire is allowed to produce a...Ch. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - (II) An experiment on the Earths magnetic field is...Ch. 28 - Prob. 7PCh. 28 - At the location of the compass, the magnetic field...Ch. 28 - (II) A long horizontal wire carries 24.0 A of...Ch. 28 - (II) A straight stream of protons passes a given...Ch. 28 - (II) Determine the magnetic field midway between...Ch. 28 - (II) Two straight parallel wires are separated by...Ch. 28 - (II) Two long straight wires each carry a current...Ch. 28 - (II) A long pair of insulated wires serves to...Ch. 28 - (II) A third wire is placed in the plane of the...Ch. 28 - (II) A power line carries a current of 95 A west...Ch. 28 - (II) A compass needle points 28 E of N outdoors....Ch. 28 - Prob. 18PCh. 28 - (II) Let two long parallel wires, a distance d...Ch. 28 - (II) Repeat Problem 19 if the wire at x = 0...Ch. 28 - (II) Two long wires are oriented so that they are...Ch. 28 - (II) Two long parallel wires 8.20 cm apart carry...Ch. 28 - (III) A very long flat conducting strip of width d...Ch. 28 - (III) A triangular loop of side length a carries a...Ch. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - (I) A 2.5-mm-diameter copper wire carries a 33-A...Ch. 28 - (II) A toroid (Fig. 2817) has a 50.0-cm inner...Ch. 28 - Prob. 29PCh. 28 - (II) (a) Use Eq. 281, and the vector nature of B,...Ch. 28 - (II) A coaxial cable consists of a solid inner...Ch. 28 - (III) Suppose the current in the coaxial cable of...Ch. 28 - Prob. 33PCh. 28 - (II) A wire, in a plane, has the shape shown in...Ch. 28 - (II) A circular conducting ring of radius R is...Ch. 28 - (II) A small loop of wire of radius 1.8 cm is...Ch. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - (III) Use the result of Problem 41 to find the...Ch. 28 - (III) A wire is bent into the shape of a regular...Ch. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - (III) A square loop of wire, of side d, carries a...Ch. 28 - (II) An iron atom has a magnetic dipole moment of...Ch. 28 - (I) The following are some values of B and B0 for...Ch. 28 - (I) A large thin toroid has 285 loops of wire per...Ch. 28 - (II) An iron-core solenoid is 38 cm long and 1.8...Ch. 28 - Three long parallel wires are 3.5 cm from one...Ch. 28 - Prob. 52GPCh. 28 - Prob. 53GPCh. 28 - Prob. 54GPCh. 28 - Two long straight parallel wires are 15 cm apart....Ch. 28 - A rectangular loop of wire carries a 2.0-A current...Ch. 28 - Prob. 57GPCh. 28 - A long horizontal wire carries a current of 48 A....Ch. 28 - A square loop of wire, of side d, carries a...Ch. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - For two long parallel wires separated by a...Ch. 28 - Near the Earths poles the magnetic field is about...Ch. 28 - A 175-g model airplane charged to 18.0 mC and...Ch. 28 - Suppose that an electromagnet uses a coil 2.0 m in...Ch. 28 - Four hour long straight parallel wires located at...Ch. 28 - Prob. 67GPCh. 28 - A thin 12-cm-long solenoid has a total of 420...Ch. 28 - A 550-turn solenoid is 15 cm long. The current...Ch. 28 - Prob. 70GPCh. 28 - Prob. 71GPCh. 28 - Prob. 72GPCh. 28 - Prob. 73GPCh. 28 - Prob. 74GPCh. 28 - (II) A circular current loop of radius 15 cm...Ch. 28 - (III) A set of Helmholtz coils (see Problem 61,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current in a long solenoid of radius 3 cm and 20 turns cm is varied with time at a rate of 2 A/s. Find the electric field at a distance of 4 cm from die center of the solenoid.arrow_forward12.4 Check Your Understanding Two wires, both carrying current out of the page, have a current of magnitude 2.0 mA and 3.0 mA, respectively. The first wire is located at (0.0 cm, 5.0 cm) while the other wire is located at (12.0 cm, 0.0 cm). What is the magnitude of the magnetic force per unit length of the first wire on the second and the second wire on the first?arrow_forwardIf a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forward
- Is the magnetic field inside a toroid completely uniform? Almost uniform?arrow_forwardA 5.0-m section of a long, straight wire carries a current of 10 A while in a uniform magnetic field of magnitude 8.0103T . Calculate the magnitude of the force on the section if the angle between the field and the direction of the current is (a) 45°; (b) 90°; (C) 0°; or (d) 180°.arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forward
- A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of magnitude 4.0105 T that is directed vertically downward, what is tire resultant magnitude of the magnetic field 20 cm above the wire? 20 cm below the wire?arrow_forwardRepeat Exercise 22.41, but with the loop lying flat on the ground with its current circulating counterclockwise (when viewed from above) in a location where the Earth’s field is north, but at an angle 45.0° below the horizontal and with a strength at 6.00105T.arrow_forwardTwo long, parallel wires each carry the same current I in the same direction (Fig. OQ30.4). Is the total magnetic field at the point P midway between the wires (a) zero, (b) directed into the page, (c) directed out of the page, (d) directed to the left, or (e) directed to the right?arrow_forward
- 12.3 Check Your Understanding Using Example 12.3, keeping the currents the same in wires 1 and 3, what should the current be in wire 2 to counteract the magnetic fields horn wires 1 and 3 so that there is no net magnetic field at point P?arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardA cosmic-ray electron moves at 7.5 × 106 m/sinches perpendicular to Earth’s magnetic field at an altitude queer the field strength is 1.0 × 105T. What is the radius of the circular path the electron follows?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning