Concept explainers
(a)
To show that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
(a)
Answer to Problem 54P
It is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
Explanation of Solution
Write the Schrodinger’s equation.
Here,
Write the statement to be proved.
Here,
Write the expression of the given wavefunction.
Here,
Put equation (III) in equation (II).
Take the derivative equation (III) with respect to
Take the derivative of the above equation with respect to
Put equations (V) in the left-hand side of equation (II) and rearrange it.
Write the equation for the reduced Planck’s constant.
Here,
Write the equation for the wave vector.
Here,
Put equation (VII) and (VIII) in (VI).
Write the equation for the de Broglie wavelength.
Here,
Rewrite the above equation for
Put the above equation in equation (IX).
Write the equation for kinetic energy.
Put the above equation in equation (XI).
Conclusion:
Equation (XIII) is exactly the same as equation (IV) which has to be proved.
Thus, it is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
(b)
To show that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
(b)
Answer to Problem 54P
It is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
Explanation of Solution
Write the expression of the given wavefunction.
Put equation (XIV) in equation (II).
Take the derivative equation (XIV) with respect to
Take the derivative of the above equation with respect to
Put the above equation in the left-hand side of equation (XV) and rearrange it.
Put equation (VII) and (VIII) in the above equation.
Put equation (X) in the above equation.
Put equation (XII) in the above equation.
Conclusion:
Equation (XVI) is exactly the same as equation (XV) which has to be proved.
Thus, it is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
Want to see more full solutions like this?
Chapter 28 Solutions
Principles of Physics: A Calculus-Based Text
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning