Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 13OQ
To determine
The change in fraction of the particles that are reflected as the barrier height is reduced.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of electrons is incident on a barrier that is 0.60 nm wide and 6.40 eV high. If the number of electrons striking the barrier each second is 6.50 ✕ 1021 /s with an energy of 5.35 eV, then how long would it take for a single electron to be transmitted through the barrier?
A 26.4 eV electron has a 0.239 nm wavelength. If such electrons are passed through a double slit and have their first maximum at an angle of 13.0°, what is the slit separation d (in nm)?
For a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is Δx ≈ L. (a) Use the uncertainty principle to estimate the uncertainty in its momentum.(b) Because the particle stays inside the box, its average momentum must be zero. Its average squared momentum is then ⟨p2⟩ ≈ (Δp)2. Estimate the energy of the particle. (c) State how the result of part (b) compares with the actual ground-state energy.
Chapter 28 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Similar questions
- A quantum mechanical oscillator vibrates at a frequency of 250.0 THz. What is the minimum energy of radiation it can emit?arrow_forwardA photon passes through a horizontal slit of width 5 × 10-6 m. What uncertainty in the vertical position will this photon have as it emerges from the slit? What is the minimum uncertainty in the vertical momentum?arrow_forwardWhen a beam of electrons is directed at a suitably narrow pair of slits, a)one bright region with intensity decreasing exponentially on each side is observed at a screen behind the double slit. b)alternating areas of bright intensity and low intensity are observed behind the double slit. c)all the electrons pass through one slit and a single, sharply defined region of bright intensity is observed. b)two areas of bright, sharply defined intensity are observed, one behind each slit.arrow_forward
- Electrons with an energy of 0.610 eV are incident on a double slit in which the two slits are separated by 40.0 nm. (a) What is the speed of these electrons? m/s (b) What is the de Broglie wavelength (in nanometers!) of these electrons? nm (c) What is the angle between the two second-order maxima in the resulting interference pattern?arrow_forwardA single beam of electrons shines on a single slit of width 3.3nm. A diffraction pattern (of electrons!) is formed on a screen that is 2.1m away from the slit. The distance between the central bright spot and the first minimum is 2.1cm.What is the speed (m/s) of the electrons?Make use of the small angle approximation.arrow_forwardIn an electron microscope, the nonrelativistic electron beam is formed by a setup similar to the electron gun used in the Davisson– Germer experiment. The electrons have negligible kinetic energy before they are accelerated. What accelerating voltage is needed to produce electrons with wavelength 10 pm = 0.010 nm (roughly 50,000 times smaller than typical visible-light wavelengths)?arrow_forward
- Two adjacent allowed energies of an electron in a one-dimensional box are 2.0 eV and 4.5 eV. What is the length of the box?arrow_forwardElectrons with an energy of 0.842 eV are incident on a double slit in which the two slits are separated by 40.0 nm. What is the speed of these electrons?arrow_forwardElectrons, all with the same speed, pass through a tiny 17-nm-wide slit and create a diffraction pattern on a detector 55 mm behind the slit. What is the electron's kinetic energy, in eV, if the central maximum has a width of 3.5 mm?arrow_forward
- A horizontal beam of laser light of wavelength is 585 nm passes through a narrow slit that has width 0.0602mm. The intensity of the light is measured on a vertical screen that is 2.00 m from the slit. (a) What is the minimum uncertainty in the vertical component of the momentum of each proton in the bean after the photon has passed through thr slit? What is the width of the central maximum and the intensity in terms of I0 at the first minimum? (b) If these photons scatters off an electron at rest at an angle of 15 degrees, what is the photon's final energy? (c) If these photons strike a metal surface with work function 2.2eV, what would be the maximum kinetic energy of the emitted electrons?arrow_forwardAn electron microscope uses electrons accelerated by a potential difference 50 kV. Calculate the de Broglie wavelength of the electrons. Compare the resolving power of an electron microscope with that of an optical microscope, which uses visible light of wavelength 550 nm. Assume the numerical aperture of the objective lens of both microscopes are the same.arrow_forwardA beam of 40 eV electrons traveling in the+x-directionpasses through a slit that is parallel to the y-axis and5.0 mm wide. The diffraction pattern is recorded on a screen 2.5 mfrom the slit. (a) What is the de Broglie wavelength of the electrons?(b) How much time does it take the electrons to travel from the slit tothe screen? (c) Use the width of the central diffraction pattern to calculatethe uncertainty in the y-component of momentum of an electronjust after it has passed through the slit. (d) Use the result of part(c) and the Heisenberg uncertainty principle [(Eq. 39.29) for y] toestimate the minimum uncertainty in the y-coordinate of an electronjust after it has passed through the slit. Compare your result to thewidth of the slit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax