Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 36P
To determine
The fractional uncertainty in the mass determination of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A π0 meson is an unstable particle produced in high-energy particle collisions. Its rest energy is approximately 135 MeV, and it exists for a lifetime of only 8.70 × 10-17 s before decaying into two gamma rays. Using the uncertainty principle, estimate the fractional uncertainty Δm/m in its mass determination.
A neutral pion 770 (rest energy = 135.0 MeV) produced in a high-energy particle experiment moves at a speed of 0.851c. After a very
short time, it decays into two y-ray photons. One of the y-ray photons has an energy of 126 MeV. What is the energy (in MeV) of the
second y-ray photon? Take relativistic effects into account.
Number i
Before decay
Units
E
mm
After decay
E₂
mu
Most of the particles known to physicists are unstable. For example, the lifetime of the neutral pion,π0, is about 8.4x10-17 s. Its mass is 135.0 MeV/c2. a) What is the energy width of the π0 in its ground state? b) What is the relative uncertainty ∆m/m of the pion’s mass?
Chapter 28 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Similar questions
- If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, what is the difference in their mass in kilograms?arrow_forwardThe muon is unstable and has a mean lifetime of about 2.2 microseconds. A muon is an elementary particle similar to the electron. with an electric charge of -1 e, but with a much greater mass. The mass of a muon is 0.1135u, where the Atomic mass unit u = 1.66 x 10^-27 kg. It decays into an electron and two neutrinos. What is the energy released in this decay (in MeV)? Recall 1 eV = 1.6 x 10^-19 J).arrow_forward3. The lifetime of an unstable particle is governed by the exponential probabil- ity distribution. In particular, the probability that the particle lives for time t and then decays in the time interval to t+ dt is given by P(1) dt = e¬M a dr, where A is a positive decay constant. (a) Show that the probability that the particle eventually decays is equal to one. (b) Find an expression for the mean lifetime of the particle. (c) Find an expression for the probability that the particle lives for at least time T.arrow_forward
- An isotope with atomic mass of 39.953326 u decays by positron emission to a daughter nucleus with atomic mass of 39.951306 u. What is the endpoint energy of the positron spectrum? 860 kev 1.88 MeV 0 keV 1.37 MeVarrow_forwardPls help ASAP.arrow_forwardWhat is the uncertainty in the energy released in the decay of a π0 due to its short lifetime?arrow_forward
- Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 7.04-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects. X = iarrow_forwardCalculate the speeds of the electrons from a 1 kV electron gun and from a 1 MV electron gun. The mass of the electron is 0.511 MeV or 9.109 * 10 ^ - 31 * kgarrow_forwardWhat is the approximate uncertainty in the mass of a muon, as determined from its decay lifetime? Assume it's decay lifetime is 2.30 us. 2.548 x10-4° kgarrow_forward
- A positive pion (π+, mass: m = 2.50 × 10-28 kg) at rest decays into a positive muon (μ+, mass: m₁ = 1.88 × 10-28 kg) and a neutrino. mμ (a) How much energy is released in the decay? You may assume the rest mass of the neutrino is negligible. Give your answer in MeV. (b) Give one reason why the neutrino is required in this decay. Briefly explain your answer.arrow_forwardAn Ω- particle has rest energy 1672 MeV and mean lifetime 8.2x10-11 s. It is created and decays in a particle track detector and leaves a track 24 mm long. What is the total energy of the Ω- particle?arrow_forwardThe least massive particle known to exist is the electron neutrino. Though scientists once believed that it had no mass, like the photon, they have now determined that this particle has an extremely low mass, equivalent to a few electron volts. Assuming a mass of 2.2 eV/c2 (or 3.9 × 10-36 kg) and a speed of 4.4 × 106 m/s, which of the following values equals the neutrino’s de Broglie wavelength? a. 3.8 × 10-5 m b. 4.7 × 10-7m c. 1.7 × 10-10m d. 8.9 × 10-14marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax