College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 49PE
(a) Using data from Table 7.1, calculate the amount of mass converted to energy by the fusion of 1.00 kg of hydrogen. (b) What is the ratio of mass destroyed to the original mass,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Sun produces energy at a rate of 4.00×1026 W by the fusion of hydrogen. (a) How many kilograms of hydrogen undergo fusion each second? (b) If the Sun is 90.0% hydrogen and half of this can undergo fusion before the Sunchanges character, how long could it produce energy at its current rate? (c) How many kilograms of mass is the Sun losing per second? (d) What fraction of its mass will it have lost in the time found in part (b)?
How do I Identify this problem?
What is the problem asking for? (Distance, time, speed, acceleration, energy, a comparison between two values?) - What are the units that the answer should be in?
(a) Using data from Table 7.1, calculate the mass converted to energy by the fission of 1.00 kg of uranium. (b) What is the ratio of mass destroyed to the original mass, Δ?/??
Nuclear fusion can happen when a carbon nucleus of mass 12u fuses with a hydrogen nucleus of mass 1.00782 u to form a nitrogen nucleus of mass 13.00574 u.
Determine how much energy is released by the reaction, expressed in MeV. (Keep five significant digits)
Chapter 28 Solutions
College Physics
Ch. 28 - Which of Einstein's postulates of special...Ch. 28 - Is Earth an inertial frame of reference? Is the...Ch. 28 - When you are flying in a commercial jet, it may...Ch. 28 - Does motion affect the rate of a clock as measured...Ch. 28 - To whom does the elapsed time for a process seem...Ch. 28 - How could you travel far into the future without...Ch. 28 - To does an object seem greater in length, an...Ch. 28 - Relativistic effects such as time dilation and...Ch. 28 - Suppose an astronaut is moving relative to the...Ch. 28 - Explain the meaning of the terms "red shift" and...
Ch. 28 - What happens to the relativistic Doppler effect...Ch. 28 - Is the relativistic Doppler effect consistent with...Ch. 28 - All galaxies farther away than about 50106ly...Ch. 28 - How does modern relativity modify the law of...Ch. 28 - Is it possible for an external force to be acting...Ch. 28 - How are the classical laws of conservation of...Ch. 28 - What happens to the mass of water in a pot when it...Ch. 28 - Consider a thought experiment. You place an...Ch. 28 - The mass of the fuel in a nuclear reactor...Ch. 28 - We know that the velocity of an object with mass...Ch. 28 - Given the fact that light travels at c, can it...Ch. 28 - If you use an Earth-based telescope to project a...Ch. 28 - (a) What is if v=0.250c ? (b) If v=0.500c ?Ch. 28 - (a) What is if v=0.100c ? (b) If v=0.900c ?Ch. 28 - Particles called -mesons are produced by...Ch. 28 - Suppose a particle called a kaon is created by...Ch. 28 - A neutral -meson is a particle that can be...Ch. 28 - A neutron lives 900 s when at rest relative to an...Ch. 28 - If relativistic effects are to be less than 1%,...Ch. 28 - If relativistic effects are to be less than 3%,...Ch. 28 - (a) At what relative velocity is =1.50 ? (b) At...Ch. 28 - (a) At what relative velocity is =2.00 ? (b) At...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - A spaceship, 200 m long as seen on board, moves by...Ch. 28 - How fast would a 6.0 m-long sports car have to be...Ch. 28 - (a) How far does the muon in Example 28.1 travel...Ch. 28 - (a) How long would the muon in Example 28.1 have...Ch. 28 - (a) How long does it take the astronaut in Example...Ch. 28 - (a) How fast would an athlete need to be running...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - Unreasonable Results A spaceship is heading...Ch. 28 - Suppose a spaceship heading straight towards the...Ch. 28 - Repeat the previous problem with the ship heading...Ch. 28 - If a spaceship is approaching the Earth at 0.100c...Ch. 28 - (a) Suppose the speed of light were only 3000 m/s....Ch. 28 - If a galaxy moving away from the Earth has a speed...Ch. 28 - A space probe speeding towards the nearest star...Ch. 28 - If two spaceships are heading directly towards...Ch. 28 - Two planets are on a collision course, heading...Ch. 28 - When a missile is shot from one spaceship towards...Ch. 28 - What is the relative velocity of two spaceships if...Ch. 28 - Near the center of our galaxy, hydrogen gas is...Ch. 28 - A highway patrol officer uses a device that...Ch. 28 - Prove that for any relative velocity v between two...Ch. 28 - Show that for any relative velocity v between two...Ch. 28 - (a) All but the closest galaxies are receding from...Ch. 28 - Find the momentum of a helium nucleus having a...Ch. 28 - What is the momentum of an electron traveling at...Ch. 28 - (a) Find the momentum of a 1.00109 kg asteroid...Ch. 28 - (a) What is the momentum of a 2000 kg satellite...Ch. 28 - What is the velocity of an electron that has a...Ch. 28 - Find the velocity of a proton that has a momentum...Ch. 28 - (a) Calculate the speed of a 1.00- g particle of...Ch. 28 - (a) Calculate for a proton that has a momentum of...Ch. 28 - What is the rest energy of an electron, given its...Ch. 28 - Find the rest energy in joules and MeV of a...Ch. 28 - If the rest energies of a proton and a neutron...Ch. 28 - The Big Bang that began the universe is estimated...Ch. 28 - A supernova explosion of a 2.001031 kg star...Ch. 28 - (a) Using data from Table 7.1, calculate the mass...Ch. 28 - (a) Using data from Table 7.1, calculate the...Ch. 28 - There is approximately 1034 J of energy available...Ch. 28 - A muon has a rest mass energy of 105.7 MeV, and it...Ch. 28 - A -meson is a particle that decays into a muon...Ch. 28 - (a) Calculate the relativistic kinetic energy of a...Ch. 28 - Alpha decay is nuclear decay in which a helium...Ch. 28 - (a) Beta decay is nuclear decay in which an...Ch. 28 - A positron is an antimatter version of the...Ch. 28 - What is the kinetic energy in MeV of a -meson...Ch. 28 - Find the kinetic energy in MeV of a neutron with a...Ch. 28 - (a) Show that (pc)2/(m c 2)2=21. This means that...Ch. 28 - One cosmic ray neutron has a velocity of 0.250c...Ch. 28 - What is for a proton having a mass energy of...Ch. 28 - (a) What is the effective accelerating potential...Ch. 28 - (a) Using data from Table 7.1, find the mass...Ch. 28 - (a) Calculate the energy released by the...Ch. 28 - A Van de Graaff accelerator utilizes a 50.0 MV...Ch. 28 - Suppose you use an average of 500kWh of electric...Ch. 28 - (a) A nuclear power plant converts energy from...Ch. 28 - Nuclear-powered rockets were researched for some...Ch. 28 - The Sun produces energy at a rate of 4.001026 W by...Ch. 28 - Unreasonable Results A proton has a mass of...Ch. 28 - Construct Your Own Problem Consider a highly...Ch. 28 - Construct Your Own Problem Consider an astronaut...Ch. 28 - Prob. 1TPCh. 28 - Prob. 2TPCh. 28 - Prob. 3TPCh. 28 - Prob. 4TPCh. 28 - Prob. 5TPCh. 28 - Prob. 6TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Analyzing ecological footprints reveals that (A) Earth's carrying capacity would increase if per capita meat co...
Campbell Biology (11th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV, what is the difference in their mass in kilograms?arrow_forwardOne cosmic ray neuron has a velocity of 0.250c relative to the Earth. (a) What is the neutron's total energy in MeV? (b) Find its momentum. (c) Is in this situation? Discuss in terms of the equation given in part (a) of the previous problem.arrow_forwardWhat is for a proton having amass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt)?arrow_forward
- A particle has γ=15,687. Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation.arrow_forwardThe fission of 1 kg of uranium produces 8.0 × 1013 J of energy. Part (a) Calculate the mass, in grams, converted to energy by the fission of 0.95 kg of uranium. Part (b) What is the ratio of the converted mass to the original mass?arrow_forwardA particle has γ=18,399. a) Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation. b) In a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.) If a massless particle has momentum 1,739 MeV/c, calculate its energy in MeV. Thank you so much!!arrow_forward
- A particle has γ=18,399. a)Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation. b) In the previous problem, in a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.) If a massless particle has momentum 1,739 MeV/c, calculate its energy in MeV.arrow_forward(a) Using data from this table, calculate the mass (in g) converted to energy by the fission of 1.00 kg of uranium. 9 Am, (b) What is the ratio of mass destroyed to the original mass, Am marrow_forwardi have no clue where to start with this question.arrow_forward
- (a) Calculate y for a proton that has a momentum of 1.47 kg m/s.. " x (b) What is its speed (in m/s)? Such protons form a rare component of cosmic radiation with uncertain origins. m/sarrow_forward1.9. Find the Lorentz factory for a proton that has the following speeds. Hence calculate the relativistic KE for each case. Compare the values with that of the non-relativistic KE. (a) v = 5 x 105 /m/s (b) v 5 x 107 m/s (c) v = 2 × 108 m/sarrow_forwardThe fission of 1 kg of uranium produces 8.0 × 1013 J of energy. (a) Calculate the mass, in grams, converted to energy by the fission of 0.85 kg of uranium. (b) What is the ratio of the converted mass to the original mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning