College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 31PE
A highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the Doppler shift. The outgoing radar has a frequency of 100 GHz and the returning echo has a frequency 15.0 kHz higher. What is the velocity of the vehicle? Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the problem, because the effect is small.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the Doppler shift. The outgoing radar has a frequency of 100 GHz and the returning echo has a frequency 15.0 kHz higher.What is the velocity of the vehicle? Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the problem, because the effect is small.
A highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the Doppler shift. The outgoing radar has a
frequency of 95 GHz and the returning echo from a truck has a frequency 16.6 kHz higher. How fast in km/h is the truck moving?
Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the problem, because the effect is small.
Round your answer to two decimal places.
You are on the jury in a murder trial. Almost all the evidence points to the same defendant, but they have a seemingly airtight alibi: Exactly one hour before the murder, the accused drove a car through a radar checkpoint. Mr. Police Officer said that there was excellent visibility at the spot, so he had stood 6 meters from the road and measured the speed of the car when it was only 10 meters away from where he was standing. The radar2 showed 60 km/h, which was also the speed limit at the location, so the car was allowed to continue. Thorough technical investigations show that the car continued at the same constant speed for the next hour. The murder occurred 70km away from the checkpoint, so it appears that the accused could not have arrived in time to commit the murder.
Show using related rates that the actual speed of the car in the radar check was over 70 km/h and that the defendant therefore had time to commit the murder.
Chapter 28 Solutions
College Physics
Ch. 28 - Which of Einstein's postulates of special...Ch. 28 - Is Earth an inertial frame of reference? Is the...Ch. 28 - When you are flying in a commercial jet, it may...Ch. 28 - Does motion affect the rate of a clock as measured...Ch. 28 - To whom does the elapsed time for a process seem...Ch. 28 - How could you travel far into the future without...Ch. 28 - To does an object seem greater in length, an...Ch. 28 - Relativistic effects such as time dilation and...Ch. 28 - Suppose an astronaut is moving relative to the...Ch. 28 - Explain the meaning of the terms "red shift" and...
Ch. 28 - What happens to the relativistic Doppler effect...Ch. 28 - Is the relativistic Doppler effect consistent with...Ch. 28 - All galaxies farther away than about 50106ly...Ch. 28 - How does modern relativity modify the law of...Ch. 28 - Is it possible for an external force to be acting...Ch. 28 - How are the classical laws of conservation of...Ch. 28 - What happens to the mass of water in a pot when it...Ch. 28 - Consider a thought experiment. You place an...Ch. 28 - The mass of the fuel in a nuclear reactor...Ch. 28 - We know that the velocity of an object with mass...Ch. 28 - Given the fact that light travels at c, can it...Ch. 28 - If you use an Earth-based telescope to project a...Ch. 28 - (a) What is if v=0.250c ? (b) If v=0.500c ?Ch. 28 - (a) What is if v=0.100c ? (b) If v=0.900c ?Ch. 28 - Particles called -mesons are produced by...Ch. 28 - Suppose a particle called a kaon is created by...Ch. 28 - A neutral -meson is a particle that can be...Ch. 28 - A neutron lives 900 s when at rest relative to an...Ch. 28 - If relativistic effects are to be less than 1%,...Ch. 28 - If relativistic effects are to be less than 3%,...Ch. 28 - (a) At what relative velocity is =1.50 ? (b) At...Ch. 28 - (a) At what relative velocity is =2.00 ? (b) At...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - A spaceship, 200 m long as seen on board, moves by...Ch. 28 - How fast would a 6.0 m-long sports car have to be...Ch. 28 - (a) How far does the muon in Example 28.1 travel...Ch. 28 - (a) How long would the muon in Example 28.1 have...Ch. 28 - (a) How long does it take the astronaut in Example...Ch. 28 - (a) How fast would an athlete need to be running...Ch. 28 - Unreasonable Results (a) Find the value of for...Ch. 28 - Unreasonable Results A spaceship is heading...Ch. 28 - Suppose a spaceship heading straight towards the...Ch. 28 - Repeat the previous problem with the ship heading...Ch. 28 - If a spaceship is approaching the Earth at 0.100c...Ch. 28 - (a) Suppose the speed of light were only 3000 m/s....Ch. 28 - If a galaxy moving away from the Earth has a speed...Ch. 28 - A space probe speeding towards the nearest star...Ch. 28 - If two spaceships are heading directly towards...Ch. 28 - Two planets are on a collision course, heading...Ch. 28 - When a missile is shot from one spaceship towards...Ch. 28 - What is the relative velocity of two spaceships if...Ch. 28 - Near the center of our galaxy, hydrogen gas is...Ch. 28 - A highway patrol officer uses a device that...Ch. 28 - Prove that for any relative velocity v between two...Ch. 28 - Show that for any relative velocity v between two...Ch. 28 - (a) All but the closest galaxies are receding from...Ch. 28 - Find the momentum of a helium nucleus having a...Ch. 28 - What is the momentum of an electron traveling at...Ch. 28 - (a) Find the momentum of a 1.00109 kg asteroid...Ch. 28 - (a) What is the momentum of a 2000 kg satellite...Ch. 28 - What is the velocity of an electron that has a...Ch. 28 - Find the velocity of a proton that has a momentum...Ch. 28 - (a) Calculate the speed of a 1.00- g particle of...Ch. 28 - (a) Calculate for a proton that has a momentum of...Ch. 28 - What is the rest energy of an electron, given its...Ch. 28 - Find the rest energy in joules and MeV of a...Ch. 28 - If the rest energies of a proton and a neutron...Ch. 28 - The Big Bang that began the universe is estimated...Ch. 28 - A supernova explosion of a 2.001031 kg star...Ch. 28 - (a) Using data from Table 7.1, calculate the mass...Ch. 28 - (a) Using data from Table 7.1, calculate the...Ch. 28 - There is approximately 1034 J of energy available...Ch. 28 - A muon has a rest mass energy of 105.7 MeV, and it...Ch. 28 - A -meson is a particle that decays into a muon...Ch. 28 - (a) Calculate the relativistic kinetic energy of a...Ch. 28 - Alpha decay is nuclear decay in which a helium...Ch. 28 - (a) Beta decay is nuclear decay in which an...Ch. 28 - A positron is an antimatter version of the...Ch. 28 - What is the kinetic energy in MeV of a -meson...Ch. 28 - Find the kinetic energy in MeV of a neutron with a...Ch. 28 - (a) Show that (pc)2/(m c 2)2=21. This means that...Ch. 28 - One cosmic ray neutron has a velocity of 0.250c...Ch. 28 - What is for a proton having a mass energy of...Ch. 28 - (a) What is the effective accelerating potential...Ch. 28 - (a) Using data from Table 7.1, find the mass...Ch. 28 - (a) Calculate the energy released by the...Ch. 28 - A Van de Graaff accelerator utilizes a 50.0 MV...Ch. 28 - Suppose you use an average of 500kWh of electric...Ch. 28 - (a) A nuclear power plant converts energy from...Ch. 28 - Nuclear-powered rockets were researched for some...Ch. 28 - The Sun produces energy at a rate of 4.001026 W by...Ch. 28 - Unreasonable Results A proton has a mass of...Ch. 28 - Construct Your Own Problem Consider a highly...Ch. 28 - Construct Your Own Problem Consider an astronaut...Ch. 28 - Prob. 1TPCh. 28 - Prob. 2TPCh. 28 - Prob. 3TPCh. 28 - Prob. 4TPCh. 28 - Prob. 5TPCh. 28 - Prob. 6TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
61. Consider the reaction between calcium oxide and carbon dioxide:
A chemist allows 14.4 g of and 13.8 g of ...
Introductory Chemistry (6th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Which clade does not include humans? (A)synapsids (B)lobe-fins (C) diapsids (D) osteichthyans
Campbell Biology (11th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The truck in Figure P39.1 is moving at a speed of 10.0 m/s relative to the ground. The person on the truck throws a baseball in the backward direction at a speed of 20.0 m/s relative to the truck. What is the velocity of the baseball as measured by the observer on the ground? Figure P39.1arrow_forward(a) Find the value of for the following situation. An astronaut measures the length of his spaceship to be 100 m, while an observer measures it to be 25.0 m. (b) What is the of the spaceship relative to Earth?arrow_forwardA highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the Doppler shift. The outgoing radar has a frequency of 100 GHz and the returning echo has a frequency 15.0 kHz higher. What is the velocity of the vehicle? Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the problem, because the effect is small.arrow_forward
- (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forward(a) How fast would an athlete need to be running for a race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forward(a) What is the momentum of a 2000 kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that =1+(1/2)v2/c2 at low velocities.)arrow_forward
- Quasars are faint, distant sources of radio waves. (Quasar is short for "quasi-stellar source." They are so named because, like a star, they appear to the astronomer to be pointlike.) From the shift in the frequency of their emitted light toward the red, called the "redshift," we know that quasars are moving very fast. Astronomers observe that the more distant an object is from the earth, the faster it moves. In this way they determine that quasars are billions of light years from earth. To be visible at this great distance, quasars must have enormous luminosity. Typically a quasar radiates energy at a rate on the order of 1040 W, roughly 1014 times greater than the sun or 40 times greater than the most luminous galaxy. At what rate is rest mass being consumed to produce this much radiation? Quasar 3C-273arrow_forwardQuasars are faint, distant sources of radio waves. (Quasar is short for "quasi-stellar source." They are so named because, like a star, they appear to the astronomer to be pointlike.) From the shift in the frequency of their emitted light toward the red, called the "redshift," we know that quasars are moving very fast. Astronomers observe that the more distant an object is from the earth, the faster it moves. In this way they determine that quasars are billions of light years from earth. To be visible at this great distance, quasars must have enormous luminosity. Typically a quasar radiates energy at a rate on the order of 1040 W, roughly 1014 times greater than the sun or 40 times greater than the most luminous galaxy. At what rate is rest mass being consumed to produce this much radiation?arrow_forwardA speeder tries to explain to the police that the yellow warning lights she was approaching on the side of the road looked green to her because of the Doppler shift. How fast would she have been traveling if yellow light of wavelength 580 nm had been shifted to green with a wavelength of 560 nm? Assume c=3x108 m/s and that light was moving not the car. Write your answer in percents of c rounded to a two decimals for example 1.25arrow_forward
- A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 29 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.arrow_forwardA linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 19 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.Note: Assume that the kinetic energy is also converted into the gamma rays, and is included in the two photons.arrow_forwardNeutron stars are what are thought to cause pulsars. A pulsar is an astronomical radio sourcethat emits pulses of radiation, as seen from earth. The regularity of the pulses initially causedthe discoverers Jocelyn Bell Burnell and Antony Hewish to speculate that the signals were fromanother civilization. The pulses were so regularly spaced that it was thought that pulsars couldbe used as a time standard. However, it was soon seen that the rate of pulse emission slows, butthen abruptly increases in events known as glitches. The current model (highly simplified) for a pulsar is a neutron star, one in which the electronshave been pushed down into the nucleuses by extreme gravitational forces to combine with theprotons to form neutrons. Material falling onto the surface of the neutron star gets superheatedand shoots off in the form of a jet. If the jet doesn’t coincide with the rotational axis of the star,the jet will precess around the axis. If the earth happens to lie on the cone of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College