Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 40P

(a)

To determine

The minimum average distance by which the target was missed.

(a)

Expert Solution
Check Mark

Answer to Problem 40P

The minimum average miss distance is (2m)1/2(2Hg)1/4.

Explanation of Solution

The initial height of the pellet is H, its mass is m and let the target be the origin

Write the given expression for deviation from the target

  Δxf=(Δxi)+(Δvxt)                                                                                                    (I)

Here, Δxf is the uncertainty in position, Δxf is the uncertainty in initial position, Δvx is the uncertainty in velocity and t is the time taken.

Write the uncertainty relation.

  Δxi(mΔvx)=2

Here, Δxf is the uncertainty in position, Δvx is the uncertainty in velocity, m is the mass and is the reduced Planck’s constant.

Substitute (I) and rearrange

  Δvx=2(mΔxi)                                                                                                          (II)

Write the expression for change in velocity using equation of motion

    s=ut+12at2                                                                                                      (III)

Here, u is initial velocity, a is the acceleration, s is the distance travelled.

Substitute 0 for u, g for a and H for s in (III) and rearrange for t

Write the expression for time taken to reach distance H

  t=2Hg                                                                                                             (IV)

Substitute (IV) and (II) in (I)

  Δxf=(Δxi)+2mΔxi2Hg                                                                                       (V)

Find the uncertainty in initial position by differentiating the above equation with respect to Δxi

  d(Δxf)d(Δxi)=012m(Δxi)22Hg=0

Since the second derivative of equation (V) is positive. The above found Δxi is the minimum.

Rearrange for Δxi

  Δxi=(2m)1/2(2Hg)1/4                                                                                            (V)

Conclusion

Substitute Δxi in (V) to find Δxf

  Δxf=(2m)1/2(2Hg)1/4+2m2Hg((2m)1/2(2Hg)1/4)1=2((2m)1/2(2Hg)1/4)=(2m)1/2(2Hg)1/4

Thus, the minimum average miss distance is (2m)1/2(2Hg)1/4.

(b)

To determine

Find the average miss distance given the mass and height.

(b)

Expert Solution
Check Mark

Answer to Problem 40P

The average miss distance is 5.19×1016 m.

Explanation of Solution

The mass of the pellet is 0.500g and the height from which it is dropped is 2.00m.

Substitute 0.500g for m2.00m for H, 9.8ms2 for g and 1.054×1034 Js for in (V) to find Δxf

    Δxf=(2×1.054×1034 kgm2s10.500g)1/2(2×2.00m9.8ms2)1/4=(2×1.054×1034 kgm2s10.500×103kg)1/2(2×2.00m9.8ms2)1/4=5.19×1016 m

Thus, the average miss distance is 5.19×1016 m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Imagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.
If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexample
A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their acceleration

Chapter 28 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill