Concept explainers
(a)
Interpretation: The glycosidic linkages of the stachyose are to be labeled.
Concept introduction: Monosaccharides are the small units of simple sugars. Polysaccharides are made up of small units of monosaccharides. These small units are joined together by glycoside linkage.
Answer to Problem 28.66P
The red colored oxygen atoms are a part of glycosic linkages as hown below.
Figure 1
Explanation of Solution
The structure of stachyose,
Figure 1
The acetals containing alkoxy groups attached to anomeric carbons in the stachyose represent the glycosidic linkages. The red colored oxygen atoms are a part of glycosic linkages.
The glycosidic linkages of the stachyose are shown in Figure 1.
(b)
Interpretation: Each glycosidic linkages of the stachyose are to be classified as
Concept introduction: Monosaccharides are the small units of simple sugars. Polysaccharides are made up of small units of monosaccharides. These small units are joined together by glycoside linkage.
Answer to Problem 28.66P
The glycosidic linkage
Figure 1
Explanation of Solution
The structure of stachyose,
Figure 1
The glycosidic linkages which are composed of alkoxy group above the plane are
The glycosidic linkage
(c)
Interpretation: The products formed on hydrolysis of stachyose are to be predicted.
Concept introduction: Glycosidic linkages are hydrolyzed in presence of acid to form cyclic hemiacetal and corresponding alcohol. Acetals in the presence of acid undergo hydrolysis to form cyclic hemiacetals.
Answer to Problem 28.66P
The products formed on hydrolysis of stachyose are,
Figure 2
Explanation of Solution
On acidic hydrolysis of stachyose, the glycosidic linkages are cleaved to form the four products. The corresponding
Figure 3
The products formed are
(d)
Interpretation: The validation to the corresponding fact that whether stachyose is reducing sugar or not is to be stated.
Concept introduction: The reducing sugars contain hemiacetal and they undergo mutarotation. These sugars are in equilibrium with cyclic monosaccharide forms.
Answer to Problem 28.66P
Stachyose is not a reducing sugar.
Explanation of Solution
The given tetrasaccharide stachyose does not contain any hemiacetal and does not undergo mutarotation. Thus, the given tetrasaccharide is not a reducing sugar.
The product formed on treatment of stachyose with excess
(e)
Interpretation: The product formed on treatment of stachyose with excess
Concept introduction: The hydroxyl groups of monosaccharides are converted into the ether groups in presence of base and
Answer to Problem 28.66P
The product formed on treatment of stachyose with excess
Figure 4
Explanation of Solution
On treatment of stachyose with excess
Figure 5
The product formed on treatment of stachyose with excess
(f)
Interpretation: The product formed on treatment of product in (e) with
Concept introduction: Glycosidic linkages are hydrolyzed in presence of acid to form cyclic hemiacetal and corresponding alcohol. Acetals in the presence of acid undergo hydrolysis to form cyclic hemiacetals.
Answer to Problem 28.66P
The products formed on treatment of product in (e) with
Figure 6
Explanation of Solution
On acidic hydrolysis of the given compound, the glycosidic linkages are cleaved to form the four products. The corresponding chemical reaction is shown below.
Figure 7
The products formed on treatment of product in (e) with
Want to see more full solutions like this?
Chapter 28 Solutions
Package: Loose Leaf for Organic Chemistry with Biological Topics with Connect Access Card
- One suggestion for solving the fuel shortage due to decreasing volumes of fossil fuels are hydrogen / oxygen fuel cells. a. State the two half-cell reaction equations for such fuel cells. Calculate the cell potential as well as the electrical work gained by this fuel cell at standard conditions with E002/H20 = 1.229 V. b. Compare the fuel cell to the Gibbs free energy of the combustion reaction of n-octane at standard conditions. Use ASºm, n-Oct., 1 = 361.2 J/mol K.arrow_forwarda. Determine the electrochemical potential of the following cell using E°Mg2+/Mg = -2.362 V. Mg | Mg2+ (a=104) || H* (a = 4) | H2 (p = 0.5 bar) | Pt b. A galvanic chain consists of Co²+ / Co and Ag+ / Ag half-cells with EºCo²+/Co = -0.282 V and Eº Ag+/Ag = 0.799 V. Determine which half-cell will be reduced and which one will be oxidised. Furthermore, calculate the electrochemical potential as well as the equilibrium constant of the whole cell at i. [Co²+] = 0.1 M and [Ag+] = 0.5 M ii. [Co²+] = 0.001 M and [Ag*] = 1.5 Marrow_forwardThe equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C. Pt | H2, g❘ HClaq || AgClaq | Ags State the redox reactions present in this cell. Calculate the pH value of the electrolyte solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and Clare equal.arrow_forward
- Here are the energies (in kcal/mol) for staggered and eclipsed interactions for CH, CC, and CBr bonds eclipsed (0°) staggered (60°) bonds CH/CH 1.0 0.0 CH/CC 1.3 0.0 Br: CC/CC 3.0 0.9 Br CH/CBr 1.8 0.0 CC / CBr 3.3 1.0 CBr / CBr 3.7 1.2 a) I've drawn the Newman projection for one of the staggered conformations of the molecule above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered and the three eclipsed conformations (in order). CH₂ H3C. H' H Br b) Calculate the relative energies for each of the conformations and write them below each conformation.arrow_forward90. Draw the stereoisomers obtained from each of the following reactions: a. H₂ b. H₂ C. H₂ Pd/C Pd/C Pd/Carrow_forward36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the first excited state from higher energy states. Line A has a wavelength of 434 nm. BA Increasing wavelength, λ (a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.arrow_forward
- f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? H₂C H₂C CH2 1.60Å ハ C. * CH₂ H₂C * C H₂ 120°arrow_forwardQuestion Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributorarrow_forwardCan you show me or determine the longest carbon chain, which is octane? Potentially highlight it in different sections to show me, plz, or individually?arrow_forward
- PLEASE ANSWER ALL PARTS!!arrow_forwardd) Determine the formal charge on the nitrogen atom in each of the structures. NH3 NH2 N C бобкат : N N H H Н H2N-OH A B C D E F Garrow_forwardLewis Structure, Hybridization & Molecular Geometry a) Draw the Lewis Structure of the molecules; Label the hybridization of each carbon atom; Predict the approximate molecular geometry around each carbon atom. CH3CHO CH3CN b) Draw the Lewis Structure of Nitromethane; Predict the approximate molecular geometry around the nitrogen atom. CH3NO2 c) Draw the Lewis Structure; Label the hybridization of the boron atom; Predict the approximate molecular geometry. BF3 BF4arrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning