To calculate: The concentration of each reactant as the function of distance by using the finite difference approach, and apply centred finite-difference approximations with

Answer to Problem 15P
Solution:
The concentration of each reactant as the function of distance is,
The below plot shows the distance versus reactant.
Explanation of Solution
Given Information:
The series of first order, liquid phase reactions is,
The second order ODEs by using the steady-state mass balance.
Here,
Refer to the Prob 28.14, the Danckwerts boundary conditions is,
Here,
Formula used:
The finite divided difference formula is,
Calculation:
Recall the ordinary differential equations,
Substitute the finite divided difference formula in the above differential equations.
Substitute
Solve further,
Now solve for inlet node
Here use the second order version from the Table 19.3 for the interior nodes,
Can be solved for,
Substitute
Solve for the outer node
The similar equations can be written for the other nodes, because the condition does not include reaction rates Substitute all the parameter gives,
Rearrange the all equations in matrix form for each reactant separately, because the reactions are in series.
Write for the reactant A.
Write the following code in MATLAB.
-
The output is,
Write the all the above equations in matrix form for the reactant B.
Write the following code in MATLAB.
-
The output is,
Write the all the above equations in matrix form for the reactant C.
Write the following code in MATLAB.
-
The output is,
The reaction is in series, thus the system for each reactant is,
The below plot shows the distance versus reactant.
Want to see more full solutions like this?
Chapter 28 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
- A sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward3) Find the surface area of z -1≤ y ≤1 = 1 + x + y + x2 over the rectangle −2 ≤ x ≤ 1 and - Solution: TYPE YOUR SOLUTION HERE! ALSO: Generate a plot of the surface in Mathematica and include that plot in your solution!arrow_forward7. Walkabout. Does this graph have an Euler circuit? If so, find one. If not, explain why not.arrow_forward
- Below, let A, B, and C be sets. 1) Prove (AUB) nC = (ANC) U (BNC).arrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward1) Suppose continuous random variable X has sample space S = [1, ∞) and a pdf of the form f(x) = Ce-(2-1)/2. What is the expected value of X?arrow_forward
- Blue Ridge Hot Tubs manufactures and sells two models of hot tubs: the Aqua-Spa and the Hydro-Lux. Howie Jones, the owner and manager of the company, needs to decide how many of each type of hot tub to produce during his next production cycle. Howie buys prefabricated fiberglass hot tub shells from a local supplier and adds the pump and tubing to the shells to create his hot tubs. (This supplier has the capacity to deliver as many hot tub shells as Howie needs.) Howie installs the same type of pump into both hot tubs. He will have only 200 pumps available during his next production cycle. From a manufacturing standpoint, the main difference between the two models of hot tubs is the amount of tubing and labor required. Each Aqua-Spa requires 9 hours of labor and 12 feet of tubing. Each Hydro-Lux requires 6 hours of labor and 16 feet of tubing. Howie expects to have 1,566 production labor hours and 2,880 feet of tubing available during the next production cycle. Howie earns a profit of…arrow_forwardNo chatgpt pls will upvotearrow_forwardFind an nfa that accepts the language L(aa (a + b)). Create and test the NFA in Jflap. Test the strings: aab, ab, aaaa, aaaab, baab, aa, abbbb, a, b, 1. Submit the Jflap diagram and the Jflap test cases. 4. Find an nfa that accepts the language L (aa* (a+b)).arrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,





