Concept explainers
Predict/Calculate Radio waves of frequency 1.427 GHz arrive at two telescopes that are connected by a computer to perform interferometry. One portion of the same wave front travels 1.051 m farther than the other before the two signals are combined. (a) Will the two waves combine constructively or destructively? (b) Calculate the value of m for the path difference between the two signals.
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth (11th Edition)
- A Marconi antenna, used by most AM radio stations, consists of the top half of a Hertz antenna (also known as a half-wave antenna because its length is /2). The lower end of this Marconi (quarter-wave) antenna is connected to Earth ground, and the ground itself serves as the missing lower hall. What are the heights of the Marconi antennas for radio stations broadcasting at (a) 560 kHz and (b) 1 600 kHz?arrow_forwardA radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?arrow_forward(a) The ideal size (most efficient) for a broadcast antenna with one end on the ground is onefourth the wavelength (/4) of the electromagnetic radiation being sent out. If a new radio station has such an antenna that is 50.0 m high, what frequency does it broadcast most efficiently? Is this in the AM or FM band? (b) Discuss the analogy of the fundamental resonant mode of an air column closed at one end to the resonance of currents on an antenna that is one-fourth their wavelength.arrow_forward
- A physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red light of wavelength 650 nm appear green to him, with a wavelength of 520 nm. The police officer writes out a traffic citation for speeding. How fast was the physicist traveling, according to his own testimony?arrow_forwardA microwave source produces pulses of 20.0GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the microwaves into a parallel beam of radiation as shown in Figure P34.60. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse. Figure P34.60arrow_forwardThe following represents an electromagnetic wave traveling in the direction of the positive y-axis: Ex=0;E0cos(kxt);Ez=0Bx=0;By=0;Bz=B0cos(kxt) The wave is passing through a wide tube of circular cross- section of radius R whose axis is along they-axis. Find the expression for the displacement current through the tube.arrow_forward
- Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forwardA microwave source produces pulses of 20.0-GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the micro-waves into a parallel beam of radiation as shown in Figure P24.72. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse.arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) .(d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward
- answer is D, explain how?arrow_forwardAn FM radio station broadcasts at 101.1 MHz. a) What is the wavelength of thewaves it produces? b) What is their wavenumber k?arrow_forward(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 x 108 m. Find the time it took for his voice to reach the earth via radio waves. (b) Someday a person will walk on Mars, which is 5.60 × 1010 m from the earth at the point of closest approach. Determine the minimum time that will be required for a message from Mars to reach the earth via radio waves. (a) Number i (b) Numberi Units Unitsarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning