Concept explainers
A theme park creates a new kind of water wave pool with large waves caused by constructive interference. There are two wave generators in phase with each other along either side of a pool that is 24.0 m wide. A swimmer that is 8.0 m from one generator and 16.0 m from the other notices that she is in a region with almost no wave amplitude, but there are large-amplitude waves on either side of her. What is the longest wavelength that will produce this interference pattern?
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology (11th Edition)
- Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forwardA riverside warehouse has several small doors facing the river. Two of these doors are open as shown in Figure P27.17. The walls of the warehouse are lined with sound-absorbing material. Two people stand at a distance L = 150 in from the wall with the open doors. Person A stands along a line passing through the midpoint between the open doors, and person B stands a distance y = 20 m to his side. A boat o the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 5.00 m. Assuming person B is at the position of the first minimum, determine the distance d between the doors, center to center.arrow_forwardA microwave source produces pulses of 20.0GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the microwaves into a parallel beam of radiation as shown in Figure P34.60. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse. Figure P34.60arrow_forward
- Chapter 35, Problem 011 Suppose that the two waves in the figure have wavelength 635 nm in air. What multiple of A gives their phase difference when they emerge if (a) ni = 1.67 and n2 = 1.77, and L = 8.81 µm; (b) n1 = 1.79 and n2 = 1.89, and L = 8.81 µm; and (c) n1 = 1.76 and n2 1.96, and L = 3.74 µm %3D ng (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardTwo coherent waves have intensities I1=25.0 mW/m^2 and I2= 15.0mW/m^2 at a certain location in space. a) Calculate the intensity of the superposition of the waves when they interfere constructively. B) Calculate the intensity of the waves when they interfere destructively. c) If the waves were incoherent, what would be the intensity of the superposition of the two waves? Justify your answerarrow_forwardTwo loudspeakers are placed in line with each other in a 20°C room. Both speakers emit soundwaves of 857.5 Hz. What is the smallest distance between the speakers for which the sound waves will have destructive interference? What is the smallest distance for which they can have constructive interference?arrow_forward
- kindly sopve in detail formatarrow_forwardTwo sources emit identical waves in phase with each other. What is the largest wavelength that will result in constructive interference when the observer is 134 m from one source and 182 m from the other? What is the largest wavelength that will result in destructive interference in this situation?arrow_forwardTwo stereo speakers are each emitting a pure tone of 200 Hz, and the waves have the same phase as they leave each speaker. The speed of sound in the room is 330 m/s. You are standing between the speakers, 1.65m from one speaker and 4.95 from the other. What type of interference do you perceive? (first, calculate the wavelength of sound, then work out the distances to each speaker as a number of wavelengths) Answer choices, pick one: a) destructive b) partial c)none d) constructivearrow_forward
- A cold distance planet has an atmosphere of hydrogen (speed of sound = 1320 m/s) over a liquid ocean of carbon dioxide (speed of sound = 259 m/s). A sudden shift in the rocky crust beneath the ocean creates a sound wave that heads toward the surface at an angle of 7 degrees. At the surface, the wave is refracted with a refraction angle of . . . Group of answer choices 49 degrees. 38 degrees. The wave undergoes total internal reflection. 80 degrees.arrow_forwardA crocodile in a like is situated 12 m below a duck and 17 m to the left of a turtle. The duck and turtle are dancing in the water, emitting two coherent waves of wavelength 0.5 m in the water surface. What is the phase difference of the two waves when they both reach the crocodile? -12 m 17 m Choices 12.6 rads 62.8 rads -62.8 rads -12.6 radsarrow_forwardthe thickness of human hair is to be measured using the interference pattern produced by an air wedge. red light with a wavelength of 638nm is used on an air wedge that is 25.0cm long. If 10 bright fringes are counted across 1.06cm in the air wedge, what is the thickness of the hairarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning