You are working at an electronics fabrication shop. Your current project is on the team producing resistors for the timer circuit that delays the closing of an elevator door. According to its design specification, the timer circuit is to have a resistance of 32.0 Ω between two points A and B. As your resistors come off the assembly line, you find that they have a variation of ±5.00% from this value. After a team meeting to evaluate this situation, the team decides that resistances in the range 32.0 ± 0.5 Ω are acceptable and do not need modification. For resistances outside this range, the director does not wish to discard the resistors, but rather to add extra resistors in series or parallel with the main resistor to bring the total equivalent resistance to the exact design value of 32.0 Ω. You are put in charge of procuring the extra resistors. What range of resistances for these extra resistors do you need to cover the entire range of variation of ±5.00%? All resistances can be measured to three significant figures.
Trending nowThis is a popular solution!
Chapter 27 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Additional Science Textbook Solutions
College Physics
Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics: Principles with Applications
Introduction To Health Physics
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- A Each resistor shown in Figure P29.36 has resistance R. An ideal emf device () is connected to points a and b via two leads (not shown in the figure). Find an expression for the current through the emf device. FIGURE P29.36arrow_forward(a) During surgery, a current as small as 20.0 ? applied directly to the heart may cause ventricular fibrillation. If the resistance of the exposed heart is 300 , what is the smallest voltage that poses this danger? (b) Does your answer imply that special electrical safety precautions are needed?arrow_forwardFigure P29.45 shows five resistors connected between terminals a and b. a. What is the equivalent resistance of this combination of resistors? b. What is the current through each resistor if a 24.0-V battery is connected across the terminals?arrow_forward
- Each resistor shown in Figure P29.36 has a resistance of 100.0 . An ideal emf device (120.0 V) is connected to points a and b via two leads (not shown in the figure). Find the current that flows through the emf device.arrow_forwardIn Figure P29.81, N real batteries, each with an emf and internal resistance r, are connected in a closed ring. A resistor R can be connected across any two points of this ring, causing there to be n real batteries in one branch and N n resistors in the other branch. Find an expression for the current through the resistor R in this case.arrow_forwardIf the terminals of a battery with zero internal resistance are connected across two identical resistors in series, the total power delivered by the battery is 8.00 W. If the same battery is connected across the same resistors in parallel, what is the total power delivered by the battery? (a) 16.0 W (b) 32.0 W (c) 2.00 W (d) 4.00 W (e) none of those answersarrow_forward
- (a) Can the circuit shown in Figure P18.29 be reduced to a single resistor connected to the batteries? Explain. (b) Find the magnitude of the current and its direction in each resistor. Figure P18.29arrow_forwardA charged capacitor is connected to a resistor and a switch as in the figure below. The circuit has a time constant of 1.30 s. Soon after the switch is closed, the charge on the capacitor is 69.0% of its initial charge. S +Q C R (a) Find the time interval required for the capacitor to reach this charge. S (b) If R = 220 k2, what is the value of C? C = µFarrow_forwardThe circuit in the drawing contains five identical resistors. The 45-V battery delivers 50 W of power to the circuit. What is the resistance R of each resistor? Number i Units R₁ 45 V wwwwww < R2 wwwww R3 RA 2 wwwwwww R5arrow_forward
- Three resistors in parallel have an equivalent resistance of 15 Ω . Two of the resistors have resistances of 30 Ω and 40 Ω. What is the resistance of the third resistor? Express your answer to two significant figures and include the appropriate units.arrow_forwardThe current in a simple single resistor (of resistance R1) circuit is I1 = 5.1 A. A second resistor, R2 = 97 Ω, is added to the first in parallel and the current through the battery increases to I2 = 8.6 A. Input an expression for the resistance of R1.arrow_forwardI need a proper solution for the following question. You are working at a company that manufactures electrical wire. Gold is the most ductile of all metals: it can be stretched into incredibly long, thin wires. The company has developed a new technique that will stretch 1.00 g of gold into a wire of length L = 2.40 km and uniform diameter. Your supervisor gives you the task of determining the resistance of such a wire at 20.00C.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning