College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 33P
(a)
To determine
The minimum kinetic energy of the electrons.
(b)
To determine
The minimum energy of the photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The resolving power of a microscope depends on the wavelength used. If you wanted to “see” an atom, a wavelength of approximately 1.00 × 10-11 m would be required. (a) If electrons are used (in an electron microscope), what minimum kinetic energy is required for the electrons? (b) What If? If photons are used, what minimum photon energy is needed to obtain the required resolution?
The de Broglie wavelength of an electron has to do with spatial resolution of an electron microscope, which is often expressed in the unit of length Å (Angstrom).
The 1 V potential difference causes an electron to gain kinetic energy EK of 1 electron Volt (eV). In the SI units, kinetic energy in eV must be converted to Joules.
The conversion factor is 1 eV = 1.6 x 10-19 Joule.
And, the formula for the wavelength is:
λ = h / p = h / √(2 m EK)
where m is electron mass.
Calculate the de Broglie wavelength of an electron (in Å) when the electron is accelerated from rest through a potential difference of:
a) 1 kV = 1,000 V (a low resolution setting of microscope),
b) 10 kV = 10,000 V (intermediate resolution).
c) 100 kV = 100,000 V (high resolution),
The resolving power of a microscope depends on the wavelength used. If you
wanted to "see" an atom, a wavelength of approximately 1.00 x 10-11 m would be
required.If electrons are used (in an electron microscope), what minimum kinetic
energy is required for the electrons?
Chapter 27 Solutions
College Physics
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At what velocity will an electron have a wavelength of 1.00 m?arrow_forwardDerive an expression for the ratio of X-ray photon frequency for two elements with atomic numbers Z1 and Z2.arrow_forwardAn X-ray tube has an applied voltage of 100 kV. (a) What is the most energetic X-ray photon it can produce? Express your answer in electron volts and joules. (b) Find the wavelength of such an X-ray.arrow_forward
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardWhat is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardA 600-nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.17 eV are emitted. Determine (a) the work function and (b) the cutoff frequency of the surface. (c) What is the stopping potential when the surface is illuminated with light of wavelength 400 nm?arrow_forward
- Why are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions between outer shells?arrow_forwardTo resolve an object in an electron microscope, the wavelength of an electrons must be close to the diameter of the object. What kinetic energy must they have in order to resolve a protein molecule that is 8.40 nm in diameter. Take the mass of an electron to be 9.11 x 10-31 kg.arrow_forwardThe smallest resolving power of a microscope is proportional to the magnitude of the wavelength used. a) 15 nm and b) How many energetic electrons are needed in the electron microscope for a resolution of 0.5nm?arrow_forward
- What is the kinetic energy of each electron in a beam of electrons if the beam produces a diffraction pattern of a crystal which is similar to that of a beam of 1.00 eV neutrons? (knowing that electron mass is 9.11*10^-31 kg and neutron mass is 1.67*10^-26 kg). What are the specific equations that are being used in this problem?arrow_forwardAn atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forwardA simple cubic crystal is cut so that the rows of atoms on its surface are separated by a distance of 0.352 nm. A beam of electrons is accelerated through a potential difference of 175 V and is incident on the surface. If all diffraction orders are possible, at what angles, relative to the crystal surface, would the diffracted beams be observed? me = 9.11 x 10-31 kg. 5.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning