College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 8P
To determine
The number of photon per second entering the eye.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m? at
a central wavelength of 500 nm. If light having this intensity and wavelength
enters the eye and the pupil is open to its maximum diameter of 8.50 mm, how
many photons per second enter the eye?
The threshold of dark - adapted (scotopic) vision is 4.0 x 10-11 W/m2 at a central wavelength of 5.00 x 102 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.5 mm, how many photons per second enter the eye?
The threshold of dark-adapted (scotopic) vision is 4.5 ✕ 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 7.9 mm, how many photons per second enter the eye? photons/s
Chapter 27 Solutions
College Physics
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the momentum of a 589-nm yellow photon?arrow_forwardSolar radiation falls on Earth's surface at a rate of 1900 W/m². Assuming that the radiation has an average wavelength of 580 nm, how many photons per square meter per second fall on the surfaces? The speed of light is 3 × 10° m/s and Planck's constant is 6.62607 × 10-34 J. s. Answer in units of photon/m² · s. 2arrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 10-11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 9.00 mm, how many photons per second enter the eye? photons/sarrow_forward
- The threshold of dark-adapted (scotopic) vision is 4.0 × 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.5 mm, how many photons per second enter the eye?arrow_forwardVisible light having a wavelength of 6.0 x 10-7 m appears orange. Compute the following using scientific notation and 3 significant digits. (a) the frequency V= i5*10^14 (b) the energy of a photon of this light E= 6.63*10^-34 S-1 Jarrow_forwardAn X-ray photon with a wavelength of 0.999 nmnm strikes a surface. The emitted electron has a kinetic energy of 990 eV. What is the binding energy of the electron in kJ/molkJ/mol? [Note that KEKE = 12mv212mv2 and 1 electron volt (eVeV) = 1.602×10−19J1.602×10−19J.] Express your answer using three significant figures.arrow_forward
- The energy in eV of a photon, if the frequency of the radiation is 7 × 10¹ Hz is 4.0 eV 3.9 eV (a) (c) (b) 2.9 eV (d) 1.9 eVarrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 7.00 mm, how many photons per second enter the eye?arrow_forwardThe threshold of dark-adapted (scotopic) vision is 4.5 ✕ 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 7.9 mm, how many photons per second enter the eye?arrow_forward
- Suppose that the microwave radiation has a wavelength of 11.6 cm. How many photons are required to heat 265 mL of coffee from 25.0 degrees Celcius to 62.0 degrees Celcius? Assume that the coffee has the same density, 0.997 g/mL, and specific heat capacity, 4.184 J/(g.K), as water over this temperature range.arrow_forwardPlatinum has a prominent x-ray emission line at 66.8 keV. (a) What is the minimum speed (in m/s) of an incident electron that could produce this emission line? m/s (b) What is the wavelength (in m) of a 66.8 keV x-ray photon? marrow_forwardSuppose a star with radius 8.69 x 10° m has a peak wavelength of 684 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. 0.029e-17 J/photon (b) What is the surface temperature of the star? 4274.3 X K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). 1.9934e17 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. X photons/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning