College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 27, Problem 31CQ
Can a sound wave in air be polarized? Explain.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1.
If you have completely polarized light of intensity 155
W
what will its intensity be after passing
through a polarizing filter with its axis at an 90 deg angle to the light's polarization direction?
mW
m?
29) A vertically polarized wave comes from the air environment at an angle of 30 degrees to the
planar glass-air interface. Wave frequency is 600 THz. (1 THz = 10 ^ 12 Hz). The refractive index of
the glass is 1.6 and the electric field amplitude of the incident wave is 50 V/ m. Find the amplitude
of the E field in the glass.
Dik kutuplanmış bir dalga hava ortamından 30 derecelik bir açıyla düzlemsel
cam-hava arayüzüne gelmektedir.Dalga frekansı 600 THz dir (1 THz = 1012 Hz)
camın kırılma indisi 1.6 ve gelen dalganın elektrik alan genliği ise 50V/m dir.
Cam içindeki E alanın genliğini bulunuz?
O -36,5
29
O 50
O 63,5
O 13,5
O 36,5
1. A radio telescope measures a plane wave with a flux density of 5 Jy along theX polarisation and 2.5 Jy along the Y polarisation. The waves are determinedto have a phase difference of 30◦. Calculate the Stokes parameters.
Chapter 27 Solutions
College Physics
Ch. 27 - What type of experimental evidence indicates that...Ch. 27 - Give an example of a wave characteristic of light...Ch. 27 - How do wave effects depend on the size of the...Ch. 27 - Under what conditions can light be modeled like a...Ch. 27 - Go outside in the sunlight and observe your...Ch. 27 - Why does the wavelength of light decrease when it...Ch. 27 - Does Huygens's principle apply to all types of...Ch. 27 - Young's double slit experiment breaks a single...Ch. 27 - Suppose you use the same double slit to perform...Ch. 27 - Is it possible to create a situation in which...
Ch. 27 - Figure 27.55 shows the central part of the...Ch. 27 - What is the advantage of a diffraction grating...Ch. 27 - What are the advantages of a diffraction grating...Ch. 27 - Can the lines in a diffraction grating be too...Ch. 27 - If a beam of white light passes through a...Ch. 27 - Suppose pure-wavelength light falls on a...Ch. 27 - Suppose a feather appears green but has no green...Ch. 27 - It is possible that there is no minimum in the...Ch. 27 - As the width of the slit producing a single-slit...Ch. 27 - A beam of light always spreads out. Why can a beam...Ch. 27 - What effect does increasing the wedge angle have...Ch. 27 - How is the difference in paths taken by two...Ch. 27 - Is there a phase change in the light reflected...Ch. 27 - In placing a sample on a microscope slide, a glass...Ch. 27 - Answer the above question if the fluid between the...Ch. 27 - While contemplating the food value of a slice of...Ch. 27 - An inventor notices that a soap bubble is dark at...Ch. 27 - A non-reflective coating like the one described in...Ch. 27 - Why is it much more difficult to see interference...Ch. 27 - Under what circumstances is the phase of light...Ch. 27 - Can a sound wave in air be polarized? Explain.Ch. 27 - No light passes through two perfect polarizing...Ch. 27 - Explain what happens to the energy carried by...Ch. 27 - When particles scattering light are smaller than...Ch. 27 - Using the information given in the preceding...Ch. 27 - When light is reflected at Brewster's angle from a...Ch. 27 - Explain how microscopes can use wave optics to...Ch. 27 - A bright white light under water is collimated and...Ch. 27 - Show that when light passes from air to water, its...Ch. 27 - Find the range of visible wavelengths of light in...Ch. 27 - What is the index of refraction of a material for...Ch. 27 - Analysis of an interference effect in a clear...Ch. 27 - What is the ratio of thicknesses of crown glass...Ch. 27 - At what angle is the first-order maximum for...Ch. 27 - Calculate the angle for the third-order maximum of...Ch. 27 - What is the separation between two slits for which...Ch. 27 - Find the distance between two slits that produces...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - What is the wavelength of light falling on double...Ch. 27 - At what angle is the fourth-order maximum for the...Ch. 27 - What is the highest-order maximum for 400-nm light...Ch. 27 - Find the largest wavelength of light falling on...Ch. 27 - What is the smallest separation between two slits...Ch. 27 - (a) What is the smallest separation between two...Ch. 27 - (a) If the first-order maximum for pure-wavelength...Ch. 27 - Figure 27.56 shows a double slit located a...Ch. 27 - Using the result of the problem above, calculate...Ch. 27 - Using the result of the problem two problems...Ch. 27 - A diffraction grating has 2000 lines per...Ch. 27 - Find the angle for the third-order maximum for...Ch. 27 - How many lines per centimeter are there on a...Ch. 27 - What is the distance between lines on a...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - An electric current through hydrogen gas produces...Ch. 27 - (a) What do the four angles in the above problem...Ch. 27 - What is the maximum number of lines per centimeter...Ch. 27 - The yellow light from a sodium vapor lamp seems to...Ch. 27 - What is the spacing between structures in a...Ch. 27 - Structures on a bird feather act like a reflection...Ch. 27 - An opal such as that shown in Figure 27.17 acts...Ch. 27 - At what angle does a diffraction grating produces...Ch. 27 - Show that a diffraction grating cannot produce a...Ch. 27 - If a diffraction grating produces a first-order...Ch. 27 - (a) Find the maximum number of lines per...Ch. 27 - €37. (a) Show that a 30,000-line-per-centimeter...Ch. 27 - A He—Ne laser beam is reflected from the surface...Ch. 27 - The analysis shown in the figure below also...Ch. 27 - Unreasonable Results Red light of wavelength of...Ch. 27 - Unreasonable Results (a) What visible wavelength...Ch. 27 - Construct Your Own Problem Consider a spectrometer...Ch. 27 - (a) At what angle is the first minimum for 550-nm...Ch. 27 - (a) Calculate the angle at which a 2.00- m -wide...Ch. 27 - (a) How wide is a single slit that produces its...Ch. 27 - (a) What is the width of a single slit that...Ch. 27 - Find the wavelength of light that has its third...Ch. 27 - Calculate the wavelength of light that produces...Ch. 27 - (a) Sodium vapor light averaging 589 nm in...Ch. 27 - (a) Find the angle of the third diffraction...Ch. 27 - (a) Find the angle between the first minima for...Ch. 27 - (a) What is the minimum width of a single slit (in...Ch. 27 - (a) If a single slit produces a first minimum at...Ch. 27 - A double slit produces a diffraction pattern that...Ch. 27 - Integrated Concepts A water break at the entrance...Ch. 27 - Integrated Concepts An aircraft maintenance...Ch. 27 - The 300-m-diameter Arecibo radio telescope...Ch. 27 - Assuming the angular resolution found for the...Ch. 27 - Diffraction spreading for a flashlight is...Ch. 27 - (a) What is the minimum angular spread of a 633-nm...Ch. 27 - A telescope can be used to enlarge the diameter of...Ch. 27 - The limit to the eye's acuity is actually related...Ch. 27 - What is the minimum diameter mirror on a telescope...Ch. 27 - You are told not to shoot until you see the whites...Ch. 27 - (a) The planet Pluto and its Moon Charon are...Ch. 27 - The headlights of a car are 1.3 m apart. What is...Ch. 27 - When dots are placed on a page from a laser...Ch. 27 - Unreasonable Results An amateur astronomer wants...Ch. 27 - Construct Your Own Problem Consider diffraction...Ch. 27 - A soap bubble is 100 nm thick and illuminated by...Ch. 27 - An oil slick on water is 120 nm thick and...Ch. 27 - Calculate the minimum thickness of an oil slick on...Ch. 27 - Find the minimum thickness of a soap bubble that...Ch. 27 - A film of soapy water (n=1.33) on top of a plastic...Ch. 27 - What are the three smallest non-zero thicknesses...Ch. 27 - Suppose you have a lens system that is to be used...Ch. 27 - (a) As a soap bubble thins it becomes dark,...Ch. 27 - A film of oil on water will appear dark when it is...Ch. 27 - Figure 27.34 shows two glass slides illuminated by...Ch. 27 - Figure 27.34 shows two 7.50-cm-long glass slides...Ch. 27 - Repeat Exercise 27.70, but take the light to be...Ch. 27 - Repeat Exercise 27.71, but take the light to be...Ch. 27 - Unreasonable Results To save money on making...Ch. 27 - What angle is needed between the direction of...Ch. 27 - The angle between the axes of two polarizing...Ch. 27 - If you have completely polarized light of...Ch. 27 - What angle would the axis of a polarizing filter...Ch. 27 - At the end of Example 27.8, it was stated that the...Ch. 27 - Show that if you have three polarizing filters,...Ch. 27 - Prove that, if I is the intensity of light...Ch. 27 - At what angle will light reflected from diamond be...Ch. 27 - What is Brewster's angle for light traveling in...Ch. 27 - A scuba diver sees light reflected from the...Ch. 27 - At what angle is light inside crown glass...Ch. 27 - Light reflected at 55.6° from a window is...Ch. 27 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 27 - If b is Brewster's angle for light reflected from...Ch. 27 - Integrated Concepts If a polarizing filter reduces...Ch. 27 - Integrated Concepts Suppose you put on two pairs...Ch. 27 - Integrated Concepts (a) On a day when the...Ch. 27 - Prob. 1TPCh. 27 - Prob. 2TPCh. 27 - Prob. 3TPCh. 27 - Prob. 4TPCh. 27 - Prob. 5TPCh. 27 - Prob. 6TPCh. 27 - Prob. 7TPCh. 27 - Prob. 8TPCh. 27 - Prob. 9TPCh. 27 - Prob. 10TPCh. 27 - Prob. 11TPCh. 27 - Prob. 12TPCh. 27 - Prob. 13TPCh. 27 - Prob. 14TPCh. 27 - Prob. 15TPCh. 27 - Prob. 16TPCh. 27 - Prob. 17TPCh. 27 - Prob. 18TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q7. How many grams of Cl are in?
Introductory Chemistry (6th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
13. A 50 kg box hangs from rope. What is the tension in the rope if:
a. The box is at rest?
b. The box moves ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Unreasonable Results To save money on making military aircraft invisible to radar, an inventor decides to coat them with a non-reflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) .(d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward(a) Light reflected at 62.5° from a gemstone in a ring is completely polarized. Can the gem be a diamond? (b) At what angle would the light be completely polarized if the gem was in water?arrow_forward
- The Poynting vector describes a flow of energy whenever electric and magnetic fields are present. Consider a long cylindrical wire of radius r with a current I in the wire, with resistance R and voltage V. From the expressions for the electric field along the wire and the magnetic field around the wire, obtain the magnitude and direction of the Poynting vector at the surface. Show that it accounts for an energy flow into the wire from the fields around it that accounts for the Ohmic heating of the wire.arrow_forwardThe speed of light in air is approximately v=3.00108 m/s and the speed of light in glass is v=2.00108 m/s . A red laser with a wavelength of =633.00 nm shines light incident of the glass, and some of the red light is transmitted to the glass. The frequency of the light is the same for the air and the glass. (a) What is the frequency of the light? (b) What is the wavelength of the light in the glass?arrow_forwardIf you have completely polarized light of intensity 150 W/m2, what will its intensity be after passing through a polarizing filter with its axis at an 89.0° angle to the light's polarization direction?arrow_forward
- A Marconi antenna, used by most AM radio stations, consists of the top half of a Hertz antenna (also known as a half-wave antenna because its length is /2). The lower end of this Marconi (quarter-wave) antenna is connected to Earth ground, and the ground itself serves as the missing lower hall. What are the heights of the Marconi antennas for radio stations broadcasting at (a) 560 kHz and (b) 1 600 kHz?arrow_forwardWhat is the physical significance of the Poynting vector?arrow_forwardIf a polarizing filter reduces the intensity of polarized light to 50.0% of its original value, by how much are the electric and magnetic fields reduced?arrow_forward
- What angle would the axis of a polarizing filter need to make with the direction of polarized light of intensity 1.00kW/m2 to reduce the intensity to 10.0 W/m2?arrow_forwardA laser beam is used to levitate a metal disk against the force of Earths gravity. (a) Derive an equation giving the required intensity of light, I, in terms of the mass m of the disk, the gravitational acceleration g, the speed of light c, and the cross-sectional area of the disk A. Assume the disk is perfectly reflecting and the beam is directed perpendicular to the disk. (b) If the disk has mass 5.00 g and radius 4.00 cm, find the necessary light intensity. (c) Give two reasons why using light pressure as propulsion near Earths surface is impractical.arrow_forwardA Doppler weather radar station broadcasts a pulse of radio waves at frequency 2.85 GHz. From a relatively small batch of raindrops at bearing 38.6 east of north, the station receives a reflected pulse after 180 s with a frequency shifted upward by 254 Hz. From a similar batch of raindrops at bearing 39.6 east of north, the station receives a reflected pulse after the same time delay, with a frequency shifted downward by 254 Hz. These pulses have the highest and lowest frequencies the station receives, (a) Calculate the radial velocity components of both batches of raindrops. (b) Assume that these raindrops are swirling in a uniformly rotating vortex. Find the angular speed of their rotation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY