College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 29PE
The yellow light from a sodium vapor lamp seems to be of pure wavelength, but it produces two first-order maxima at 36.093° and 36.129° when projected on a 10,000 line per centimeter diffraction grating. What are the two wavelengths to an accuracy of 0.1 nm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The yellow light from a sodium vapor lamp seems to be of pure wavelength, but it produces two first-order maxima at 36.093o and 36.129o when projected on a 10,000 line per centimeter diffraction grating. What arethe two wavelengths to an accuracy of 0.1 nm?
A diffraction grating has a width of 3.5 cm and has 100 lines/cm. Could this diffraction grating be used to resolve the lines of the
sodium doublet to the first order? The lines of the sodium doublet are ₁ = 588.995 nm and 12 = 589.592 nm.
On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 33.30 relative to its
surface, using an x-ray source of unknown wavelength. Additionally, when illuminated with a different x-ray, this
time of known.wavelength 0.205 nm, a second-order maximum is detected at 22.20. Determine the spacing
between the reflecting planes..
Select one:
O a. 0.19nm
O b. 1.84nm
O c. 0.27nm
O d. 0.54nm
Chapter 27 Solutions
College Physics
Ch. 27 - What type of experimental evidence indicates that...Ch. 27 - Give an example of a wave characteristic of light...Ch. 27 - How do wave effects depend on the size of the...Ch. 27 - Under what conditions can light be modeled like a...Ch. 27 - Go outside in the sunlight and observe your...Ch. 27 - Why does the wavelength of light decrease when it...Ch. 27 - Does Huygens's principle apply to all types of...Ch. 27 - Young's double slit experiment breaks a single...Ch. 27 - Suppose you use the same double slit to perform...Ch. 27 - Is it possible to create a situation in which...
Ch. 27 - Figure 27.55 shows the central part of the...Ch. 27 - What is the advantage of a diffraction grating...Ch. 27 - What are the advantages of a diffraction grating...Ch. 27 - Can the lines in a diffraction grating be too...Ch. 27 - If a beam of white light passes through a...Ch. 27 - Suppose pure-wavelength light falls on a...Ch. 27 - Suppose a feather appears green but has no green...Ch. 27 - It is possible that there is no minimum in the...Ch. 27 - As the width of the slit producing a single-slit...Ch. 27 - A beam of light always spreads out. Why can a beam...Ch. 27 - What effect does increasing the wedge angle have...Ch. 27 - How is the difference in paths taken by two...Ch. 27 - Is there a phase change in the light reflected...Ch. 27 - In placing a sample on a microscope slide, a glass...Ch. 27 - Answer the above question if the fluid between the...Ch. 27 - While contemplating the food value of a slice of...Ch. 27 - An inventor notices that a soap bubble is dark at...Ch. 27 - A non-reflective coating like the one described in...Ch. 27 - Why is it much more difficult to see interference...Ch. 27 - Under what circumstances is the phase of light...Ch. 27 - Can a sound wave in air be polarized? Explain.Ch. 27 - No light passes through two perfect polarizing...Ch. 27 - Explain what happens to the energy carried by...Ch. 27 - When particles scattering light are smaller than...Ch. 27 - Using the information given in the preceding...Ch. 27 - When light is reflected at Brewster's angle from a...Ch. 27 - Explain how microscopes can use wave optics to...Ch. 27 - A bright white light under water is collimated and...Ch. 27 - Show that when light passes from air to water, its...Ch. 27 - Find the range of visible wavelengths of light in...Ch. 27 - What is the index of refraction of a material for...Ch. 27 - Analysis of an interference effect in a clear...Ch. 27 - What is the ratio of thicknesses of crown glass...Ch. 27 - At what angle is the first-order maximum for...Ch. 27 - Calculate the angle for the third-order maximum of...Ch. 27 - What is the separation between two slits for which...Ch. 27 - Find the distance between two slits that produces...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - What is the wavelength of light falling on double...Ch. 27 - At what angle is the fourth-order maximum for the...Ch. 27 - What is the highest-order maximum for 400-nm light...Ch. 27 - Find the largest wavelength of light falling on...Ch. 27 - What is the smallest separation between two slits...Ch. 27 - (a) What is the smallest separation between two...Ch. 27 - (a) If the first-order maximum for pure-wavelength...Ch. 27 - Figure 27.56 shows a double slit located a...Ch. 27 - Using the result of the problem above, calculate...Ch. 27 - Using the result of the problem two problems...Ch. 27 - A diffraction grating has 2000 lines per...Ch. 27 - Find the angle for the third-order maximum for...Ch. 27 - How many lines per centimeter are there on a...Ch. 27 - What is the distance between lines on a...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - An electric current through hydrogen gas produces...Ch. 27 - (a) What do the four angles in the above problem...Ch. 27 - What is the maximum number of lines per centimeter...Ch. 27 - The yellow light from a sodium vapor lamp seems to...Ch. 27 - What is the spacing between structures in a...Ch. 27 - Structures on a bird feather act like a reflection...Ch. 27 - An opal such as that shown in Figure 27.17 acts...Ch. 27 - At what angle does a diffraction grating produces...Ch. 27 - Show that a diffraction grating cannot produce a...Ch. 27 - If a diffraction grating produces a first-order...Ch. 27 - (a) Find the maximum number of lines per...Ch. 27 - €37. (a) Show that a 30,000-line-per-centimeter...Ch. 27 - A He—Ne laser beam is reflected from the surface...Ch. 27 - The analysis shown in the figure below also...Ch. 27 - Unreasonable Results Red light of wavelength of...Ch. 27 - Unreasonable Results (a) What visible wavelength...Ch. 27 - Construct Your Own Problem Consider a spectrometer...Ch. 27 - (a) At what angle is the first minimum for 550-nm...Ch. 27 - (a) Calculate the angle at which a 2.00- m -wide...Ch. 27 - (a) How wide is a single slit that produces its...Ch. 27 - (a) What is the width of a single slit that...Ch. 27 - Find the wavelength of light that has its third...Ch. 27 - Calculate the wavelength of light that produces...Ch. 27 - (a) Sodium vapor light averaging 589 nm in...Ch. 27 - (a) Find the angle of the third diffraction...Ch. 27 - (a) Find the angle between the first minima for...Ch. 27 - (a) What is the minimum width of a single slit (in...Ch. 27 - (a) If a single slit produces a first minimum at...Ch. 27 - A double slit produces a diffraction pattern that...Ch. 27 - Integrated Concepts A water break at the entrance...Ch. 27 - Integrated Concepts An aircraft maintenance...Ch. 27 - The 300-m-diameter Arecibo radio telescope...Ch. 27 - Assuming the angular resolution found for the...Ch. 27 - Diffraction spreading for a flashlight is...Ch. 27 - (a) What is the minimum angular spread of a 633-nm...Ch. 27 - A telescope can be used to enlarge the diameter of...Ch. 27 - The limit to the eye's acuity is actually related...Ch. 27 - What is the minimum diameter mirror on a telescope...Ch. 27 - You are told not to shoot until you see the whites...Ch. 27 - (a) The planet Pluto and its Moon Charon are...Ch. 27 - The headlights of a car are 1.3 m apart. What is...Ch. 27 - When dots are placed on a page from a laser...Ch. 27 - Unreasonable Results An amateur astronomer wants...Ch. 27 - Construct Your Own Problem Consider diffraction...Ch. 27 - A soap bubble is 100 nm thick and illuminated by...Ch. 27 - An oil slick on water is 120 nm thick and...Ch. 27 - Calculate the minimum thickness of an oil slick on...Ch. 27 - Find the minimum thickness of a soap bubble that...Ch. 27 - A film of soapy water (n=1.33) on top of a plastic...Ch. 27 - What are the three smallest non-zero thicknesses...Ch. 27 - Suppose you have a lens system that is to be used...Ch. 27 - (a) As a soap bubble thins it becomes dark,...Ch. 27 - A film of oil on water will appear dark when it is...Ch. 27 - Figure 27.34 shows two glass slides illuminated by...Ch. 27 - Figure 27.34 shows two 7.50-cm-long glass slides...Ch. 27 - Repeat Exercise 27.70, but take the light to be...Ch. 27 - Repeat Exercise 27.71, but take the light to be...Ch. 27 - Unreasonable Results To save money on making...Ch. 27 - What angle is needed between the direction of...Ch. 27 - The angle between the axes of two polarizing...Ch. 27 - If you have completely polarized light of...Ch. 27 - What angle would the axis of a polarizing filter...Ch. 27 - At the end of Example 27.8, it was stated that the...Ch. 27 - Show that if you have three polarizing filters,...Ch. 27 - Prove that, if I is the intensity of light...Ch. 27 - At what angle will light reflected from diamond be...Ch. 27 - What is Brewster's angle for light traveling in...Ch. 27 - A scuba diver sees light reflected from the...Ch. 27 - At what angle is light inside crown glass...Ch. 27 - Light reflected at 55.6° from a window is...Ch. 27 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 27 - If b is Brewster's angle for light reflected from...Ch. 27 - Integrated Concepts If a polarizing filter reduces...Ch. 27 - Integrated Concepts Suppose you put on two pairs...Ch. 27 - Integrated Concepts (a) On a day when the...Ch. 27 - Prob. 1TPCh. 27 - Prob. 2TPCh. 27 - Prob. 3TPCh. 27 - Prob. 4TPCh. 27 - Prob. 5TPCh. 27 - Prob. 6TPCh. 27 - Prob. 7TPCh. 27 - Prob. 8TPCh. 27 - Prob. 9TPCh. 27 - Prob. 10TPCh. 27 - Prob. 11TPCh. 27 - Prob. 12TPCh. 27 - Prob. 13TPCh. 27 - Prob. 14TPCh. 27 - Prob. 15TPCh. 27 - Prob. 16TPCh. 27 - Prob. 17TPCh. 27 - Prob. 18TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
In a species of the cat family, eye color can be gray, blue, green, or brown, and each trait is true breeding. ...
Concepts of Genetics (12th Edition)
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Write the Lewis structure for each molecule. a. PH3 b. SCl2 c. F2 d. HI
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 27.1° relative to its surface, using an X-ray source of unknown wavelength. Additionally, when illuminated with a different, this time of known wavelength 0.137 nm, a second-order maximum is detected at 37.3°. Determine (a) the spacing between the reflecting planes, and (b) the unknown wavelength.arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardA beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward
- A hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardX-rays of wavelength 0.103 nm reflects off a crystal and a second-order maximum is recorded at a Bragg angle of 25.5°. What is the spacing between the scattering planes in this crystal?arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forward
- The yellow light from a sodium vapor lamp seems to be of pure wave- length, but it produces two first-order maxima at 36.093◦ and 36.129◦ when projected on a 10,000 line per centimeter diffraction grating. What are the two wavelengths to an accuracy of 0.1 nm?arrow_forwardHi, can I please get some help with this question? Thank you!arrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forward
- A red laser (λ = 656 nm) is incident on a diffraction grating that has n = 1100 lines per cm.Randomized Variablesλ = 656 nmn = 1100 lines/cm Part (a) What is the angle, in radians, that the first order maximum makes, θ1? Part (b) What is the angle of the fourth order maximum, θ4, in radians?arrow_forwardThe neon spectrum is very rich in the visible region. Among the many lines present, we can highlight two very close ones, with wavelengths 519.313 nm and 519.322 nm. If a light from a neon lamp falls perpendicularly over a diffraction network with 8400 lines per centimeter and if the spectrum is observed in the second order, what should be the illumination width of the network to resolve the two lines?arrow_forwardAn electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles of 24.2o,25.7o,29.1o,and 41.0o when projected on a diffraction grating having 10,000 lines per centimeter?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY