College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 21CQ
What effect does increasing the wedge angle have on the spacing of interference fringes? If the wedge angle is too large, fringes are not observed. Why?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
In the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page.
In this illustration, a wire extends straight to the right from point A, then curves up and around in a semicircle of radius R. On the right side of the semicircle, the wire continues straight to the right to point C. The wire lies in the plane of the page, in a region of no magnetic field. Directly below the axis A C is a region of uniform magnetic field pointing out of the page, vector Bout. If viewed from the right, the wire can rotate counterclockwise, so that the semicircular part can rotate into the region of magnetic field.
(a) Calculate the maximum value of the emf induced between the ends of the conductor. V(b) What is the value of the average induced emf for each complete rotation? Consider carefully whether the correct answer is…
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.20 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 6.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.80 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 5.00 sin(120t), where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. (Do not include units in your answer.) =
Chapter 27 Solutions
College Physics
Ch. 27 - What type of experimental evidence indicates that...Ch. 27 - Give an example of a wave characteristic of light...Ch. 27 - How do wave effects depend on the size of the...Ch. 27 - Under what conditions can light be modeled like a...Ch. 27 - Go outside in the sunlight and observe your...Ch. 27 - Why does the wavelength of light decrease when it...Ch. 27 - Does Huygens's principle apply to all types of...Ch. 27 - Young's double slit experiment breaks a single...Ch. 27 - Suppose you use the same double slit to perform...Ch. 27 - Is it possible to create a situation in which...
Ch. 27 - Figure 27.55 shows the central part of the...Ch. 27 - What is the advantage of a diffraction grating...Ch. 27 - What are the advantages of a diffraction grating...Ch. 27 - Can the lines in a diffraction grating be too...Ch. 27 - If a beam of white light passes through a...Ch. 27 - Suppose pure-wavelength light falls on a...Ch. 27 - Suppose a feather appears green but has no green...Ch. 27 - It is possible that there is no minimum in the...Ch. 27 - As the width of the slit producing a single-slit...Ch. 27 - A beam of light always spreads out. Why can a beam...Ch. 27 - What effect does increasing the wedge angle have...Ch. 27 - How is the difference in paths taken by two...Ch. 27 - Is there a phase change in the light reflected...Ch. 27 - In placing a sample on a microscope slide, a glass...Ch. 27 - Answer the above question if the fluid between the...Ch. 27 - While contemplating the food value of a slice of...Ch. 27 - An inventor notices that a soap bubble is dark at...Ch. 27 - A non-reflective coating like the one described in...Ch. 27 - Why is it much more difficult to see interference...Ch. 27 - Under what circumstances is the phase of light...Ch. 27 - Can a sound wave in air be polarized? Explain.Ch. 27 - No light passes through two perfect polarizing...Ch. 27 - Explain what happens to the energy carried by...Ch. 27 - When particles scattering light are smaller than...Ch. 27 - Using the information given in the preceding...Ch. 27 - When light is reflected at Brewster's angle from a...Ch. 27 - Explain how microscopes can use wave optics to...Ch. 27 - A bright white light under water is collimated and...Ch. 27 - Show that when light passes from air to water, its...Ch. 27 - Find the range of visible wavelengths of light in...Ch. 27 - What is the index of refraction of a material for...Ch. 27 - Analysis of an interference effect in a clear...Ch. 27 - What is the ratio of thicknesses of crown glass...Ch. 27 - At what angle is the first-order maximum for...Ch. 27 - Calculate the angle for the third-order maximum of...Ch. 27 - What is the separation between two slits for which...Ch. 27 - Find the distance between two slits that produces...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - What is the wavelength of light falling on double...Ch. 27 - At what angle is the fourth-order maximum for the...Ch. 27 - What is the highest-order maximum for 400-nm light...Ch. 27 - Find the largest wavelength of light falling on...Ch. 27 - What is the smallest separation between two slits...Ch. 27 - (a) What is the smallest separation between two...Ch. 27 - (a) If the first-order maximum for pure-wavelength...Ch. 27 - Figure 27.56 shows a double slit located a...Ch. 27 - Using the result of the problem above, calculate...Ch. 27 - Using the result of the problem two problems...Ch. 27 - A diffraction grating has 2000 lines per...Ch. 27 - Find the angle for the third-order maximum for...Ch. 27 - How many lines per centimeter are there on a...Ch. 27 - What is the distance between lines on a...Ch. 27 - Calculate the wavelength of light that has its...Ch. 27 - An electric current through hydrogen gas produces...Ch. 27 - (a) What do the four angles in the above problem...Ch. 27 - What is the maximum number of lines per centimeter...Ch. 27 - The yellow light from a sodium vapor lamp seems to...Ch. 27 - What is the spacing between structures in a...Ch. 27 - Structures on a bird feather act like a reflection...Ch. 27 - An opal such as that shown in Figure 27.17 acts...Ch. 27 - At what angle does a diffraction grating produces...Ch. 27 - Show that a diffraction grating cannot produce a...Ch. 27 - If a diffraction grating produces a first-order...Ch. 27 - (a) Find the maximum number of lines per...Ch. 27 - €37. (a) Show that a 30,000-line-per-centimeter...Ch. 27 - A He—Ne laser beam is reflected from the surface...Ch. 27 - The analysis shown in the figure below also...Ch. 27 - Unreasonable Results Red light of wavelength of...Ch. 27 - Unreasonable Results (a) What visible wavelength...Ch. 27 - Construct Your Own Problem Consider a spectrometer...Ch. 27 - (a) At what angle is the first minimum for 550-nm...Ch. 27 - (a) Calculate the angle at which a 2.00- m -wide...Ch. 27 - (a) How wide is a single slit that produces its...Ch. 27 - (a) What is the width of a single slit that...Ch. 27 - Find the wavelength of light that has its third...Ch. 27 - Calculate the wavelength of light that produces...Ch. 27 - (a) Sodium vapor light averaging 589 nm in...Ch. 27 - (a) Find the angle of the third diffraction...Ch. 27 - (a) Find the angle between the first minima for...Ch. 27 - (a) What is the minimum width of a single slit (in...Ch. 27 - (a) If a single slit produces a first minimum at...Ch. 27 - A double slit produces a diffraction pattern that...Ch. 27 - Integrated Concepts A water break at the entrance...Ch. 27 - Integrated Concepts An aircraft maintenance...Ch. 27 - The 300-m-diameter Arecibo radio telescope...Ch. 27 - Assuming the angular resolution found for the...Ch. 27 - Diffraction spreading for a flashlight is...Ch. 27 - (a) What is the minimum angular spread of a 633-nm...Ch. 27 - A telescope can be used to enlarge the diameter of...Ch. 27 - The limit to the eye's acuity is actually related...Ch. 27 - What is the minimum diameter mirror on a telescope...Ch. 27 - You are told not to shoot until you see the whites...Ch. 27 - (a) The planet Pluto and its Moon Charon are...Ch. 27 - The headlights of a car are 1.3 m apart. What is...Ch. 27 - When dots are placed on a page from a laser...Ch. 27 - Unreasonable Results An amateur astronomer wants...Ch. 27 - Construct Your Own Problem Consider diffraction...Ch. 27 - A soap bubble is 100 nm thick and illuminated by...Ch. 27 - An oil slick on water is 120 nm thick and...Ch. 27 - Calculate the minimum thickness of an oil slick on...Ch. 27 - Find the minimum thickness of a soap bubble that...Ch. 27 - A film of soapy water (n=1.33) on top of a plastic...Ch. 27 - What are the three smallest non-zero thicknesses...Ch. 27 - Suppose you have a lens system that is to be used...Ch. 27 - (a) As a soap bubble thins it becomes dark,...Ch. 27 - A film of oil on water will appear dark when it is...Ch. 27 - Figure 27.34 shows two glass slides illuminated by...Ch. 27 - Figure 27.34 shows two 7.50-cm-long glass slides...Ch. 27 - Repeat Exercise 27.70, but take the light to be...Ch. 27 - Repeat Exercise 27.71, but take the light to be...Ch. 27 - Unreasonable Results To save money on making...Ch. 27 - What angle is needed between the direction of...Ch. 27 - The angle between the axes of two polarizing...Ch. 27 - If you have completely polarized light of...Ch. 27 - What angle would the axis of a polarizing filter...Ch. 27 - At the end of Example 27.8, it was stated that the...Ch. 27 - Show that if you have three polarizing filters,...Ch. 27 - Prove that, if I is the intensity of light...Ch. 27 - At what angle will light reflected from diamond be...Ch. 27 - What is Brewster's angle for light traveling in...Ch. 27 - A scuba diver sees light reflected from the...Ch. 27 - At what angle is light inside crown glass...Ch. 27 - Light reflected at 55.6° from a window is...Ch. 27 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 27 - If b is Brewster's angle for light reflected from...Ch. 27 - Integrated Concepts If a polarizing filter reduces...Ch. 27 - Integrated Concepts Suppose you put on two pairs...Ch. 27 - Integrated Concepts (a) On a day when the...Ch. 27 - Prob. 1TPCh. 27 - Prob. 2TPCh. 27 - Prob. 3TPCh. 27 - Prob. 4TPCh. 27 - Prob. 5TPCh. 27 - Prob. 6TPCh. 27 - Prob. 7TPCh. 27 - Prob. 8TPCh. 27 - Prob. 9TPCh. 27 - Prob. 10TPCh. 27 - Prob. 11TPCh. 27 - Prob. 12TPCh. 27 - Prob. 13TPCh. 27 - Prob. 14TPCh. 27 - Prob. 15TPCh. 27 - Prob. 16TPCh. 27 - Prob. 17TPCh. 27 - Prob. 18TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
66. Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 30 s to...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
120. A hybrid SUV consumes fuel at a rate of 12.8 km/L. How many miles can the car travel on 22.5 gal of gasoli...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which vowel does this graph represent (”ah,” “ee,” or “oo”)? How can you tell? Also, how would you be able to tell for the other vowels?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardA bat is flying toward a cave wall at 27.0 m/s. What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0 kHz? The speed of sound is 341.5 m/s. Multiple Choice о 60.9 kHz О 56.5 kHz о 61.3 kHz О 56.1 kHzarrow_forward
- Compare the slope of your Data Table 2 graph to the average wavelength (Ave, l) from Data Table 2 by calculating the % Difference. Is the % Difference calculated for the wavelength in Data Table 2 within an acceptable % error? Explain why or why not?arrow_forwardThe slope of a graph of velocity, v, vs frequency, f, is equal to wavelength, l. Compare the slope of your Data Table 1 graph to the average wavelength (Ave, l) from Data Table 1 by calculating the % Difference.arrow_forwardExamine the slope of the line on the graph created using the data in Data Table 4 of Period, T2 vs L, the slope of the line is a constant containing the acceleration due to gravity, g. Using the slope of your line, determine the experimental value for g. Compare the value you determined for g from the slope of the graph to the expected value of 9.81 m/s2 by calculating the percent error.arrow_forward
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY