Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 26, Problem 7P
(I) Suppose that you have a 680-Ω, a 720-Ω, and a 1.20-kΩ resistor. What is (a) the maximum, and (b) the minimum resistance you can obtain by combining these?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:05
Students have asked these similar questions
(6) Suppose two electrical resistors with resistance R₁> 0 and R₂ > 0 are wired in parallel
in a circuit:
R₁
ww
R₂
1
1
1
+
Then the combined resistance R, measured in ohms (2), is given by
R R₁ R₂
ƏR
ƏR
(a) Find and after solving for R (e.g., R= ...).
ƏR₁ ƏR₂
(b) Describe how an increase in R₁ with R₂ held constant will change R. (Will R increase
or decrease?)
(c) Describe how a decrease in R₂ with R₁ held constant will hange R. (Will R increase
or decrease?)
A 1 Ω resistor and a 4 Ω resistor are connected in parallel. The combination is connected in series with a 5.2 Ω resistor and a 24 V supply.
(iii) Calculate the voltage (in V) across the 1 Ω resistor
(1) Some Christmas tree lights have a characteristic that when one
light (filament) burns out, the lights throughout go out too.
However, burned-out lights go out in other series lights. Discuss
the difference of these two sets of lights.
(2) Why do lights on a car become dimmer when you start a car?
(3) What similarities and differences do you see from the
equivalent resistance and capacitance formula?
Chapter 26 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 26.1 - Repeat Example 261 assuming now that the...Ch. 26.2 - You have a 10- and a 15- resistor. What is the...Ch. 26.3 - Write the equation for the lower loop abcdefga of...Ch. 26.4 - If the jumper cables of Example 2610 were...Ch. 26.5 - In 10 times constants, the charge on the capacitor...Ch. 26 - Explain why birds can sit on power lines safely,...Ch. 26 - Discuss the advantages and disadvantages of...Ch. 26 - If all you have is a 120-V line, would it be...Ch. 26 - Two lightbulbs of resistance R1 and R2 (R2 R1)...Ch. 26 - Household outlets are often double outlets. Are...
Ch. 26 - With two identical lightbulbs and two identical...Ch. 26 - If two identical resistors are connected in series...Ch. 26 - You have a single 60-W bulb on in your room. How...Ch. 26 - When applying Kirchhoffs loop rule (such as in...Ch. 26 - Compare and discuss the formulas for resistors and...Ch. 26 - For what use are batteries connected in series?...Ch. 26 - Can the terminal voltage of a battery ever exceed...Ch. 26 - Explain in detail how you could measure the...Ch. 26 - In an RC circuit, current flows from the battery...Ch. 26 - Given the circuit shown in Fig. 2634, use the...Ch. 26 - Figure 2635 is a diagram of a capacitor (or...Ch. 26 - Design a circuit in which two different switches...Ch. 26 - What is the main difference between an analog...Ch. 26 - What would happen if you mistakenly used an...Ch. 26 - Explain why an ideal ammeter would have zero...Ch. 26 - A voltmeter connected across a resistor always...Ch. 26 - A small battery-operated flashlight requires a...Ch. 26 - Different lamps might have batteries connected in...Ch. 26 - Prob. 1PCh. 26 - (I) Four 1.50-V cells are connected in series to a...Ch. 26 - (II) A 1.5-V dry cell can be tested by connecting...Ch. 26 - (II) What is the internal resistance of a 12.0-V...Ch. 26 - (I) A 650- and a 2200- resistor are connected in...Ch. 26 - (I) Three 45- lightbulbs and three 65- lightbulbs...Ch. 26 - (I) Suppose that you have a 680-, a 720-, and a...Ch. 26 - (I) How many 10- resistors must be connected in...Ch. 26 - (II) Suppose that you have a 9.0-V battery and you...Ch. 26 - Three 1.70-k resistors can be connected together...Ch. 26 - (II) A battery with an emf of 12.0 V shows a...Ch. 26 - (II) Eight identical bulbs are connected in series...Ch. 26 - (II) Eight bulbs are connected in parallel to a...Ch. 26 - (II) The performance of the starter circuit in an...Ch. 26 - (II) A close inspection of an electric circuit...Ch. 26 - (II) Determine (a) the equivalent resistance of...Ch. 26 - (II) A 75-W, 110-V bulb is connected in parallel...Ch. 26 - (II) (a) Determine the equivalent resistance of...Ch. 26 - (II) Whal is the net resistance of the circuit...Ch. 26 - (II) Calculate the current through each resistor...Ch. 26 - (II) The two terminals of a voltage source with...Ch. 26 - (II) Two resistors when connected in series to a...Ch. 26 - (III) Three equal resistors (R) are connected to a...Ch. 26 - (III) A 2.8-k and a 3.7-k resistor are connected...Ch. 26 - (III) Consider the network of resistors shown in...Ch. 26 - (III) You are designing a wire resistance heater...Ch. 26 - (I) Calculate the current in the circuit of Fig....Ch. 26 - (II) Determine the terminal voltage of each...Ch. 26 - (II) For the circuit shown in Fig. 2647, find the...Ch. 26 - (II) (a) A network of five equal resistors R is...Ch. 26 - (II) (a) What is the potential difference between...Ch. 26 - (II) Calculate the currents in each resistor of...Ch. 26 - (II) Determine the magnitudes and directions of...Ch. 26 - (II) Determine the magnitudes and directions of...Ch. 26 - (II) A voltage V is applied to n identical...Ch. 26 - (III) (a) Determine the currents I1, I2, and I3 in...Ch. 26 - (III) What would the current I1 be in Fig. 2653 if...Ch. 26 - (III) Determine the current through each of the...Ch. 26 - (III) If the 25- resistor in Fig. 2654 is shorted...Ch. 26 - (III) Twelve resistors, each of resistance R, are...Ch. 26 - (III) Determine the net resistance in Fig. 2656...Ch. 26 - (II) Suppose two batteries, with unequal emfs of...Ch. 26 - (I) Estimate the range of resistance needed to...Ch. 26 - (II) In Fig. 2658 (same as Fig. 2617a), the total...Ch. 26 - (II) Two 3.8-F capacitors, two 2.2-k resistors,...Ch. 26 - (II) How long does it take for the energy stored...Ch. 26 - (II) A parallel-plate capacitor is filled with a...Ch. 26 - (II) The RC circuit of Fig. 2659 (same as Fig....Ch. 26 - (II) Consider the circuit shown in Fig. 2660,...Ch. 26 - (III) Determine the time constant for charging the...Ch. 26 - (III) Two resistors and two uncharged capacitors...Ch. 26 - (III) Suppose the switch S in Fig. 2662 is closed....Ch. 26 - (I) An ammeter has a sensitivity of 35,00 /V. What...Ch. 26 - (I) What is the resistance of a voltmeter on the...Ch. 26 - (II) A galvanometer has a sensitivity of 45 k/V...Ch. 26 - (II) A galvanometer has an internal resistance of...Ch. 26 - (II) A particular digital meter is based on an...Ch. 26 - (II) A milliammeter reads 25 mA full scale. It...Ch. 26 - (II) A 45-V battery of negligible internal...Ch. 26 - (II) An ammeter whose internal resistance is 53 ...Ch. 26 - (II) A battery with E=12.0V and internal...Ch. 26 - (II) A 12.0-V battery (assume the internal...Ch. 26 - (III) Two 9.4-k resistors are placed in series and...Ch. 26 - (III) When the resistor R in Fig. 2664 is 35 , the...Ch. 26 - Suppose that you wish to apply a 0.25-V potential...Ch. 26 - A three-way lightbulb can produce 50 W, 100 W, or...Ch. 26 - Suppose you want to run some apparatus that is 65...Ch. 26 - For the circuit shown in Fig. 2618a, show that the...Ch. 26 - A heart pacemaker is designed to operate at 72...Ch. 26 - Prob. 70GPCh. 26 - A Wheatstone bridge is a type of bridge circuit...Ch. 26 - An unknown length of platinum wire 1.22 mm in...Ch. 26 - The internal resistance of a 1.35-V mercury cell...Ch. 26 - How many 12-W resistors, each of the same...Ch. 26 - A solar cell, 3.0 cm square, has an output of 350...Ch. 26 - A power supply has a fixed output voltage of 12.0...Ch. 26 - The current through the 4.0-k resistor in Fig....Ch. 26 - A battery produces 40.8 V when 7.40 A is drawn...Ch. 26 - In the circuit shown in Fig. 2668, the 33-...Ch. 26 - The current through the 20- resistor in Fig. 2669...Ch. 26 - (a) A voltmeter and an ammeter can be connected as...Ch. 26 - (a) What is the equivalent resistance of the...Ch. 26 - A flashlight bulb rated at 2.0 W and 3.0 V is...Ch. 26 - Some light-dimmer switches use a variable resistor...Ch. 26 - A potentiometer is a device to precisely measure...Ch. 26 - Electronic devices often use an RC circuit to...Ch. 26 - The circuit shown in Fig. 2676 is a primitive...Ch. 26 - Determine the current in each resistor of the...Ch. 26 - In the circuit shown in Fig. 2678, switch S is...Ch. 26 - Figure 2679 shows the circuit for a simple...Ch. 26 - Measurements made on circuits that contain large...Ch. 26 - A typical voltmeter has an internal resistance of...Ch. 26 - (II) An RC series circuit contains a resistor R =...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write the SI unit for each abbreviation.
29. 27 mm
Applied Physics (11th Edition)
20. What kinds of waves exhibit interference?
Conceptual Physical Science (6th Edition)
19. A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 6.0 s, coasts for 2.0s, and then slow...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
11. A wildebeest is running in a straight line, which we shall call the x axis, with the positive direction to ...
College Physics (10th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Figure 18.22 shows data and a fit curve from an experimental measurement of the pressure-volume curve for a hum...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (ii) What will be the value of the voltage drop across the R3 = 80 resistor?| R1 50 R2 100 V 30 V R3 80arrow_forwardA 1 Ω resistor and a 4 Ω resistor are connected in parallel. The combination is connected in series with a 5.2 Ω resistor and a 24 V supply. (ii) Calculate the voltage (in V) across the 5.2 Ω resistorarrow_forward(4),(5)arrow_forward
- 9. (II) A bird stands on a de electric transmission line carrying 2800 A (Fig. 18–34). The line has 2.5 × 10~$ N resistance per meter, and the bird's feet are 4.0 cm apart. What is the potential difference between the bird's feet? FIGURE 18-34 Problem 9.arrow_forwardConsider n series-connected identical resistors of resistance R. Which of the following is true about their equivalent resistance? (A) The answer cannot be found on the other choices. B) Req=n/R; C) Req=R"; D) Req=Rn; E) Req = R/n;arrow_forward(a) Calculate the capacitance needed to get an RC time constant of 1.00×103 s with a 0.100-Ω resistor. (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- (I) Three 45Ω lightbulbs and three 65Ω lightbulbs areconnected in series. (a) What is the total resistance of thecircuit? (b) What is the total resistance if all six are wiredin parallel?arrow_forward[3] Consider the following circuit shown below which has an EMF, ɛ, that consists of 3 identical 1.50 volt batteries, each with an internal resistance of 3.00 2, that are connected in parallel. R2 =200. s %3D (a) Calculate the total resistance (in ohms) of the entire circuit (remember to include the small internal resistances of the 3 batteries) 10. R, = R3:300.a R4 = 300. ri each r 3.00e please answer part DEF only (b) Find the total current, I (in amperes) that flows through this circuit.arrow_forward29. (II) For the circuit shown in Fig. 26-53, find the poten- tial difference between points a and b. Each resistor has R=180 2 and each battery is 1.5 V. FIGURE 26-53 Problem 29. 1.5 V R b R ww R a мину R 1.5 V I b Farrow_forward
- 8arrow_forwardTwo resistors, one having a resistance of 840 kn, are connected in series to produce a total resistance of 0.430 MQ. (a) What is the value of the second resistance (in ko)? ΚΩ (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent? liarrow_forward(69%) Problem 10: In the figure, these three resistors are counected to a voltage source so that Ry = 5.5 a and R3 = 8.5 2 are in parallel with one anotber and that combination is in series with R = 0.75 0. R z = ? 12.0 V R R3 2 * 50% Part (a) Calculate the power being dissipated by the third resistor R3. in watts. Grade Summary P;- Deductions Potentiul 100% Late Work % 75%% sin() cos() lani) 7 OME Late Putential cotan() asin) acos() E 4 5 6 Submissions sinh) 23 Attempts remaining: 996 (0% per attermpt) detailed view atan() acotan() cosh() tanh() cotanh) END O Degrees C Radians 0% VO DACKSACE CLBAR 1 2 0% 0% Hint I give up Suhmit Feedbackarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY