Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 73P
A coil of current-carrying Nichrome wire is immersed in a liquid. (Nichrome is a nickel-chromium-iron alloy commonly used in heating elements.) When the potential difference across the coil is 12 V and the current through the coil is 5.2 A, the liquid evaporates at the steady rate of 21 mg/s. Calculate the heat of vaporization of the liquid (see Module 18-4).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electric current of 5 A passing through a resistor has a measured voltage of 6 V across the resistor. The resistor is cylindrical with a diameter of 2.5 cm and length of 15 cm. The resistor has a uniform temperature of 90°C and the room air temperature is 20°C. Assuming that heat transfer by radiation is negligible, determine the heat transfer coefficient by convection.
A typical flash bulb is rated at 310 mA and 2.90 V, the respective values of
current and voltage under operational conditions. If the resistance of the
filament when it is cold (To-20°C) is 1.12 , calculate its temperature when
the lamp is on.
The filament is made of tungsten with a coefficient of expansion is
a = 4.5 x 10-3⁰C-1
A 1.00 mol sample of water vapour is enclosed in a rigid container equipped with a 9.97 Q electric resistance heater. When a current of 0.200 A is passed through the resistor for 100.0 s, the temperature of the apparatus was observed to increase by 0.465 K. Separate measurements on the evacuated container show that the heat capacity of the container and resistance heater is 60.50 J. K-1 Calculate the value of Cy for the gaseous water (water vapour).
Chapter 26 Solutions
Fundamentals of Physics Extended
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - In Fig.26-37, a resistance coil wired to an...Ch. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Which of these star clusters is oldest...
Cosmic Perspective Fundamentals
65. Determine the molecular geometry of each molecule.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
Contrast the fertility of an allotetraploid with an autotriploid and an autotetraploid.
Concepts of Genetics (12th Edition)
A force does work on a 50 g particle as the particle moves along the following straight paths in the xy-plane: ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A close analogy exists between the flow of energy by heat because of a temperature difference (see Section 19.6) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electri- cal conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity ơ, with a potential difference dV between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: Charge conduction Thermal conduction dq = oA dt dT kA dt dQ AP dx dx In the analogous thermal conduction equation on the right (Eq. 19.17), the rate dQ/dt of energy flow by heat (in SI units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State anal- ogous rules relating the direction of the electric current to the change in potential and relating the direction of…arrow_forwardA Cu wire of diameter of 2 mm and length of 1 m initially at room temperature of 300 K is applied a constant voltage difference of 100 V for 1000 seconds. The temperature of the wire rose due to Joule heating during the application of the voltage, so one waited for a sufficiently long time after the voltage is removed for the wire to cool back to the room temperature of 300 K. The conductivity of Cu is 6×107S/m. Please answer the following questions, assuming the surroundings is at room temperature 300 K: (a) What is the internal energy change for the wire from the very initial state to the final state after the entire process ends? (b) What is the internal energy change for the surroundings for the entire process? (c) What is the amount of heat that was generated in the wire and transferred to the surroundings during the entire process? (d) What is the total internal energy change of the wire plus the surroundings during the entire process? (e) What is the entropy change for the wire…arrow_forwardCurrent has a heating effect due to the law of conservation of energy. A sealed container containing ice is connected across a supply having a voltage V. If the current / is flowing through the connection, which of the following equations can solve the time needed to change the ice to water? Let m be the mass of the ice and Lfbe the latent heat of fusion of the ice. Ot = VImLf VI t = mLf t = VI O The answer cannot be found on the other choices.arrow_forward
- Problem: In a test to determine the resistance of a single-core cable, an applied voltage 2.5 V was necessary to produce a current of 2A in it at 15° C. of (a) Calculate the cable resistance at 55° C if the temperature coefficient of resistance of copper at 0°C is 1/235 per" C. (b) If the cable under working conditions carries a current of 10A at this temperature, calculate the power dissipated in the cable.arrow_forwardCurrent has a heating effect due to the law of conservation of energy. A sealed container containing a liquid is connected across a supply having a voltage V. If the current / is flowing through the connection, which of the following equations can solve the time needed to change the liquid to steam? Let m be the mass of the liquid and Ly be the latent heat of vaporization of the liquid. mlv t = VI Ot = VImLv VI t = mLv O The answer cannot be found on the other choices.arrow_forwardHow much time is needed for a surgical cauterizer to raise the temperature of 1.00 g of tissue from 37.0ºC to 100ºC and then boil away 0.500 g of water, if it puts out 2.00 mA at 15.0 kV? Ignore heat transfer to the surroundings. How do I check my work for this probelm?arrow_forward
- Upvote will be given. No long explanation needed. Answer in 2 decimal places with units.arrow_forwardHow many seconds will it take for 9.5 x 10¹² electrons (1.6 x 10^-19 C), take to pass through a conductor with a current of 120 ηA?arrow_forwardAn electric kettle draws a current of 10 A when connected to the 230 V mains supply. if all the energy produced in 5 minutes is used to heat 2 kg of water (Specific heat capacity of water = 4200 J kg-1 K-1.), determine the following:a. the power supplied to the kettle, in kWb. the electrical energy consumedc. the rise in temperature of the kettle. (Please show proper units in the solution)arrow_forward
- The inner vessel of an electrocalorimeter is made of copper and has a mass of 50grams. It contains 200 grams of water having an initial temperature of 20°C. Theelectrocalorimeter is connected to 6 volts and a constant current of 2.5 ampsflows. What will be the temperature of the water inside the inner vessel after 1hour?arrow_forwardDue to cold weather a 1 m water pipe of cross-sectional area 1 cm² is filled with ice at -10°C. Resistive heating is used to melt the ice. Current of 0.5 A is passed through 4 k resistance. Assuming that all the heat produced is used for melting, what is the minimum time required ? (Given latent heat of fusion for water/ice = 3.33 × 10³ J kg-¹, specific heat of ice = 2 × 10³ J kg¹ and density of ice = 10³ kg / m³arrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 20.7) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electrical conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity o, with a potential difference dv between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: Charge conduction Thermal conduction dq TA dt JdT| kA dt dQ | dx |AP| |dx In the analogous thermal conduction equation on the right (Eq. 20.15), the rate dQ/dt of energy flow by heat (in Sl units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State analogous rules relating the direction of the electric current to the change in potential and relating the direction of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY