Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 26, Problem 43P
ILW An unknown resistor is connected between the terminals of a 3.00 V battery. Energy is dissipated in the resistor at the rate of 0.540 W. The same resistor is then connected between the terminals of a 1.50 V battery. At what rate is energy now dissipated?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An unknown resistor is connected between the terminal of a 3.00 V battery. The power dissipated in the resistor is 0.540 W. The same resistor is then connected between the terminals of a 1.50 V battery. What power is dissipated in this case?
Two resistors, R1 = 00 kΩ and R2 = 3.00 kΩ, are connected in parallel and their combination is connected in series to a fully charged, 150-µF capacitor. When the switch is opened, the capacitor begins to discharged. What is the time constant for the discharge?
A 710.0-0 resistor is connected across the terminals of a 24.0-nF capacitor that carries an initial charge of 8.40 µC.
(a) What is the magnitude of the maximum current in the resistor?
A
(b) What is the current in the resistor 5.00 µs after the circuit is completed and the capacitor begins to discharge through
the resistor? (Indicate the direction with the sign of your answer.)
(c) How much charge remains in the capacitor 5.00 µs after the circuit is completed?
HC
Chapter 26 Solutions
Fundamentals of Physics Extended
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - In Fig.26-37, a resistance coil wired to an...Ch. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Compare the roles of CO2 and H2O in cellular respiration and photosynthesis.
Campbell Biology (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of a planets fundamental propert...
Cosmic Perspective Fundamentals
Checkpoint 25:
What is meant by the term gene expression?
Principles of Anatomy and Physiology
6.1 State the number of electrons that be must be lost by atoms of each of the following to achieve a stable el...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardElectric current I enters a node with three resistors connected in parallel (Fig. CQ18.5). Which one of the following is correct? (a) I1 = I and I2 = I3 = 0. (b) I2 I1 and I2 I3. (c) V1 V2 V3 (d) I1 I2 I3 0. Figure CQ18.5arrow_forwardA 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forward
- A charging RC circuit controls the intermittent windshield wipers in a car. The emf is 12.0 V. The wipers are triggered when the voltage across the 110 μF capacitor reaches 10.0 V; then the capacitor is quickly discharged (through a much smaller resistor) and the cycle repeats. What resistance should be used in the charging circuit if the wipers are to operate once every 1.40 s?arrow_forwardA 3.00 M resistor and a 1.00 mF capacitor are connected in series with an ideal battery of emf e= 4.00 V.At 1.00 s after the connection is made, what is the rate at which (a) the charge of the capacitor is increasing, (b) energy is being stored in the capacitor, (c) thermal energy is appearing in the resistor, and (d) energy is being delivered by the battery?arrow_forwardA 0.50μF capacitor is charged to 60 V . It is then connected in series with a 55Ω resistor and a 110 Ω resistor and allowed to discharge completely. How much energy is dissipated by the 55Ω resistor?arrow_forward
- A 0.25 μF capacitor is charged to 50 V. It is then connected in series with a 25 Ω resistor and a 100 Ω resistor and allowed to discharge completely. How much energy (3 sf) is dissipated by the 25 Ω resistor?arrow_forwardIn the figure ₁ = 2.50 V, ₂ = 0.803 V, R₁ = 5.570, R₂ = 2.790, R3 = 4.460, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁. (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www ww R₂ R₁ -18₁ (a) Number Units (b) Number i Units (c) Number Units (d) Number i Units (e) Number i Units www R₂ E₂ < <arrow_forwardA 0.75μF capacitor is charged to 100 V . It is then connected in series with a 55Ω resistor and a 120 Ω resistor and allowed to discharge completely. Question: How much energy is dissipated by the 55Ω resistor?arrow_forward
- In the figure ₁ = 4.03 V, 2 = 0.838 V, R₁ = 5.400, R₂ = 1.660, R3 = 5.39 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ R₂ - 18₁ Rs Ef (a) Number i 1.35 Units W (b) Number 0.121 Units W (c) Number i 0.310 (d) Number i (e) Number i Units W Units W Units Warrow_forwardA 3.00 M2 resistor and a 1.00 µF capacitor are connected in series with an ideal battery of emf & = 4.00 V. At 1.00 s after the connection is made, what are the rates at which (a) the charge of the capacitor is increasing? (b) energy is being stored in the capacitor? (c) thermal energy is appearing in the resistor? (d) energy is being delivered by the battery?arrow_forwardSN 10. A 11.0 μF capacitor is connected in series to a 50.0-V battery, a is flowing through the resistor, 5.00 ms after closing the switch? Amp resistor, and a switch. What is the current that 550-52 resis 0 ssf60 ssf60 ss. 50 ssf60arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY