Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 35P
GO In Fig. 26-30, current is set up through a truncated right circular cone of resistivity 731 Ω · m, left radius a = 2.00 mm, right radius b = 2.30 mm, and length L = 1.94 cm. Assume that the current density is uniform across any cross section taken perpendicular to the length. What is the resistance of the cone?
Figure 26-30 Problem 35.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
.35 O In Fig. 26-30, current is set up through a truncated right
circular cone of resistivity 731 n · m, left radius a = 2.00 mm, right
radius b = 2.30 mm, and length L = 1.94 cm. Assume that the cur-
rent density is uniform across any cross section taken perpendicu-
lar to the length. What is the resistance of the cone?
In a 100-m-long conductor of cylindrical cross-section (radius ro = 5 mm), the axial current density
is J = î2 A/m². The conductivity is o= 5.8-107 S/m. Find
a) the current flowing through the conductor,
b) the voltage across the entire length of the conductor,
c) the overall resistance of the conductor.
A rod of semiconducting material of Length L=5 m and cross-sectional area A=3 mm2 lies along the x-axis between x=0 and x=L. The material obeys ohm’s Law, and its resistivity varies along the rod according to ρ = ρ0*( 1 - x2/L2) where ρ0=4.5 x 10-4 Ω.m. The end of the rod at x=0 is at potential V0=25 V greater than the end at x=L.
What is the total resistance, in units of Ω, of the rod?
What is the current, in units of miliamperes, in the rod?
What is the electric potential, in units of volt, in the rod at x=L/2?
What is the electric-field magnitude E, in units of V/m, in the rod at x=L/2?
Chapter 26 Solutions
Fundamentals of Physics Extended
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - In Fig.26-37, a resistance coil wired to an...Ch. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
The 1H NMR spectrum of a solution of 1, 3-dimethylcyclopentadiene in concentrated sulfuric acid shows three pea...
Organic Chemistry
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rod of semiconducting material of Length L=5 m and cross-sectional area A=3 mm2 lies along the x-axis between x=0 and x=L. The material obeys ohm’s Law, and its resistivity varies along the rod according to ρ = ρ0*( 1 - x2/L2) where ρ0=4.5 x 10-4 Ω.m. The end of the rod at x=0 is at potential V0=25 V greater than the end at x=L. What is the total resistance, in units of Ω, of the rod? What is the current, in units of miliamperes, in the rod? What is the electric potential, in units of volt, in the rod at x=L/2?arrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 75 mm, respectively. If V(ρ = 2 mm) = 150 V and V(ρ = 75 mm) = 0 V, εr = 10, dielectric conductivity 5×10-4 s/m, the dielectric resistance equals to?arrow_forwardTwo conductors are made of the same material and have the same length. Con- ductor A is a solid wire of diameter 1.0 mm. Conductor B is a hollow tube of outside diameter 2.0 mm and inside diameter 1.0 mm. What is the resistance ratio RA/RB, mea- sured between their ends?arrow_forward
- A straight, cylindrical wire lying along the x axis has a length of 0.5 m and a diameter of0.2 mm. It is made of a material described by Ohm’s law with a resistivity of ρ 4 × 10-8Ωm. Assume a potential of 4 V is maintained at the left end of the wire at x = 0. Alsoassume V = 0 at x = 0.5 m. Find (a) the magnitude and direction of the electric field in thewire, (b) the resistance of the wire, (c) the magnitude and direction of the electric currentin the wire, and (d) the current density in the wire. (e) Show that E = ρ J. (E = −dVdx)arrow_forwardA rod of semiconducting material of Length L=2 m and cross-sectional area A=4 mm2 lies along the x-axis between x=0 and x=L. The material obeys ohm’s Law, and its resistivity varies along the rod according to ρ = ρ0*( 1 - x2/L2) where ρ0=3 x 10-4 Ω.m. The end of the rod at x=0 is at potential V0=25 V greater than the end at x=L. What is the electric potential, in units of volt, in the rod at x=L/2?arrow_forwardA material of resistivity p is formed into a solid, truncated cone of height h and radii r₁ and r2 at either end. Calculate the resistance of the cone between the two flat end faces.arrow_forward
- Calculate the drift velocity (in x1o-6 m/s) of electrons in a silver cylindrical conductor with a diameter of 2.0 cm carrying 5.0 A current, given there is one free electron per silver atom. Psilver = 10490 kg/m3 atomic mass of silver = 107.9 g/mol Avogadro's number = 6.02x1023 atoms/molarrow_forwardA special copper extension cord has length L = 5.25 m and rectangular cross-section given by width w = 0.500 cm and small length = 0.300 cm . Between the ends of the cord there is a voltage difference given by V+ - V- . The current I = 10.0 (A) . See diagram below . The copper resistivity ρ = 1.72x10 -8 ohm-m. (a) What is the voltage difference V+ - V-? Does your answer seem reasonable? Explain.(b) How much heat is generated (in Joules) in a time period of 3.00 minutes? (c) What is the magnitude E of the electric field in the extension cord?arrow_forwardA cylindrical conductor has resistance of R0 = 950 Ω. It has length L, radius of the cross section r, and resistivity ρ. a) If the resistivity was restored to its original value and instead the length of the conductor decreased by a factor of 2, what would the value of the new resistance be, in ohms? b) If the resistivity and length of the conductor were at their original values and the radius of the conductor increased by a factor of 4, what would be the value of the new resistance, in ohms?arrow_forward
- Two conductors A and B are made of the same А B material and have the same length L and are a attached end to end. The conductor A is a hollow tube of outer radius b = 2.0mm and inner radius L a = 1.0mm. Conductor B is a solid wire of radius L RA of conductor A and ratio of the drift speeds va/vB ? а — 1.0mm. What is the resistance Take V, = 16.0 V and current I released by the V. battery as 2.0A. a. 4.0 ohms and the ratio is 1, o b. 2.0 ohms and the ratio is 3, C. 4.0 ohms and the ratio is 3, 2.0 ohms and the ratio is 1/3,arrow_forwardWire C and wire D are made from different materials materials and have length L_{C} = L_{D} = 1m The resistivity and diameter of wire C are 2 * 10 ^ - 6 * Omega*m and 1.00 mm, and those of wire D are 1 * 10 ^ - 6 * Omega*m and 0.50 mm. The wires are joined as shown in Fig. 26-35, and a current of 2.0 A is set up in them. What is the electric potential difference be- tween (a) points 1 and 2 and (b) points 2 and 3? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3?arrow_forwardA cylindrical conductor has resistance of R0 = 140 Ω. It has length L, radius of the cross section r, and resistivity ρ. Part (a) Express the resistance in terms of L, r, ρ. Part (b) If the resistivity increases by a factor of 5, what would the value of the new resistance be, in ohms? Part (c) If the resistivity was restored to its original value and instead the length of the conductor decreased by a factor of 5, what would the value of the new resistance be, in ohms? Part (d) If the resistivity and length of the conductor were at their original values and the radius of the conductor increased by a factor of 4, what would be the value of the new resistance, in ohms?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY