![FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781119459132/9781119459132_smallCoverImage.gif)
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 26, Problem 5P
SSM WWW A beam contains 2.0 × 108 doubly charged positive ions per cubic centimeter, all of which are moving north with a speed of 1.0 × 105 m/s. What are the (a) magnitude and (b) direction of the current density ? (c) What additional quantity do you need to calculate the total current i in this ion beam?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter 26 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - Prob. 77PCh. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Complete the description of the environment which fine-grained igneous rocks form by choosing the appropriate t...
Applications and Investigations in Earth Science (9th Edition)
30. Consider the unbalanced equation for the reaction of aluminum with sulfuric acid:
a. Balance the equation...
Introductory Chemistry (6th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
When compound C, which is often used to model a more frequently occurring unit in lignins, was ozonized, produc...
Organic Chemistry
Describe an example of bioconversion. What metabolic processes can result in fuels?
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. What happens to the core of a high-mas...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- A-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY