FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 5Q
Figure 26-19 shows four situations in which positive and negative charges move horizontally and gives the rate at which each charge moves. Rank the situations according to the effective current through the regions, greatest first.
Figure 26-19 Question 5.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given the electric field through a write is 0.50 V/m. The material used to make the wire has 6.52×10²8 electrons per m³. If the material has a conductivity of
1.7×10
m, calculate the drift velocity of the electrons.
Do it quickly, will upvote you.
The current density in a copper wire of diameter 1.02 mm is 1.75 x 10⁵ A/m². The number of free electrons per cubic meter of copper is 8.5 x 10²⁸. Find the (a) current in the wire and (b) magnitude of drift velocity of electron in the wire.
Chapter 26 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - Prob. 77PCh. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. ATP is synthesized from ADP, Pi, and a proton on the matrix side of the inner mitochondrial membrane. We wi...
Biochemistry: Concepts and Connections (2nd Edition)
In cats, tortoiseshell coat color appears in females. A tortoiseshell coat has patches of dark brown fur and pa...
Genetic Analysis: An Integrated Approach (3rd Edition)
Section 17 contains a portion of the valley occupied by the Missouri River. Approximately what percentage of th...
Applications and Investigations in Earth Science (9th Edition)
64. Determine the [H3O+] and pH of a 0.200 M solution of formic acid.
Chemistry: A Molecular Approach (4th Edition)
Name each of the following:
Organic Chemistry (8th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the current carried by a conductor is doubled, what happens to (a) the charge carrier density, (b) the current density, (c) the electron drift velocity, and (d) the average time interval between collisions?arrow_forwardConsider a wire of a circular cross-section with a radius of R = 3.00mm. The magnitude of the currentdensity is modeled as J=cr2=5.00106Am4r2 . Whatis the current through the inner section of the wire from the center to r = 0.5R?arrow_forward. A copper wire of diameter 0-16 cm is connected in series to an aluminium wire of diameter 0-25 cm. A current of 10 ampere is passed through them. Find (a) current density in copper wire. (b) drift velocity of electron in the aluminium wire. The number of free electrons per unit volume of aluminium wire is 1029 m-3.arrow_forward
- When applying an electric field of magnitude 20.07 megavolts per meter across a resistor made from an unknown material, the measured magnitude of the current density is given as 14.28 microamperes per square meter. Solve for the mean time per collision, in 10-33 seconds, if the electron volume concentration of the material is known to be 6.50 × 1028 electrons per cubic meter. Use the elementary unit of charge to be e = 1.6 × 10-19 coulombs and the mass of an electron to be 9.11 × 10-31 kilogramsarrow_forwardCalculate the drift velocity (in x1o-6 m/s) of electrons in a silver cylindrical conductor with a diameter of 2.0 cm carrying 5.0 A current, given there is one free electron per silver atom. Psilver = 10490 kg/m3 atomic mass of silver = 107.9 g/mol Avogadro's number = 6.02x1023 atoms/molarrow_forwardA copper wire used for house hold electrical outlets has a radius of 2.5 mm (1Imm = 10-*m). Each Copper atom donates one electron for conduction. If the electric current in this wire is 22.00 A, copper density is 8900 kg/m and its atomic mass is 64 u. (lu = 1.66 x 10-27 kg), the electrons drift velocity v in this wire is a) 1.90 x 10- m/s. b) 8.36 x 10 m/s, c) 1.60 x 10+ m/s. d) 1.42 x 104 m/s, e) None of the above.arrow_forward
- Estimate the average drift speed of the conduction electrons in a copper wire with a cross-sectional area of 3.5 x 10-7m 2 and carrying a current of 2.8 A. Assume the density of conduction electrons in a wire is 7x1028 m -3arrow_forwardWhen applying an electric field of magnitude 20.22 megavolts per meter across a resistor made from an unknown material, the measured magnitude of the current density is given as 14.25 microamperes per square meter. Solve for the mean time per collision, in nanoseconds, if the electron volume concentration of the material is known to be 8.03 × 1028 electrons per cubic meter. Use the elementary unit of charge to be e = 1.6 × 10-19 coulombs and the mass of an electron to be 9.11 × 10-31 kilograms.arrow_forwardA tungsten wire has a radius of 0.097 mm and is heated from 20.0 to 1383 oC. The temperature coefficient of resistivity is α = 4.5 x 10-3 (Co)-1. When 120 V is applied across the ends of the hot wire, a current of 1.8 A is produced. How long is the wire? Neglect any effects due to thermal expansion of the wire.arrow_forward
- You are asked to design a circuit in which a 100-2 resistor will carry a current of 1 mA. The circuit will operate in an environment at room temperature. Calculate the minimum value of the surface area of the resistor if the resistor temperature is not to exceed 400 K.arrow_forwardWe have a copper conductor, length l = 1m and circular section of diameter d = 4mm a) Calculate the resistance of the conductor between its ends. b) If a current of 1 amp flows through said conductor: I) Calculate the drag speed of the electrons. II) calculate the number of electrons per second that cross the conductor section. Data: resistivity of copper PCu = 1.7 × 10-8 -8 ampere m: numerical density of charge carriers [nCu] = 8.5 × 1028 atoms m-3: resistivity of aluminum p Al = 2.8 × 10-8 ampere m elemental load = 1.6x10-19 Carrow_forwardWire C and wire D are made from different materials materials and have length L_{C} = L_{D} = 1m The resistivity and diameter of wire C are 2 * 10 ^ - 6 * Omega*m and 1.00 mm, and those of wire D are 1 * 10 ^ - 6 * Omega*m and 0.50 mm. The wires are joined as shown in Fig. 26-35, and a current of 2.0 A is set up in them. What is the electric potential difference be- tween (a) points 1 and 2 and (b) points 2 and 3? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY