FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 52P
GO The current-density magnitude in a certain circular wire is J = (2.75 × 1010 A/m4)r2, where r is the radial distance out to the wire’s radius of 3.00 mm. The potential applied to the wire (end to end) is 60.0 V. How much energy is converted to thermal energy in 1.00 h?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The current-density magnitude in a certain circular wire is J = (2.75×10¹0 A/m¹)²,
where r is the radial distance out to the wire's radius of 3.00 mm. The potential
applied to the wire (end to end) is 120.0 V. How much energy is converted to
thermal energy in 2.00 h?
The current density in a copper wire of diameter 1.02 mm is 1.75 x 10⁵ A/m². The number of free electrons per cubic meter of copper is 8.5 x 10²⁸. Find the (a) current in the wire and (b) magnitude of drift velocity of electron in the wire.
The current passing through a copper wire is I=20 A. The resistivity of copper at room temperature is given as
p = 1.7 x 10-8m. The cylindrical wire has a length of L=30 m and a diameter of D=3,7 mm. Take = 3.
b) Calculate the magnitude of the external electric field required to generate this current, in mV/m.
Chapter 26 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 26 - Figure 26-15 shows cross sections through three...Ch. 26 - Figure 26-16 shows cross sections through three...Ch. 26 - Figure 26-17 shows a rectangular solid conductor...Ch. 26 - Figure 26-18 shows plots of the current i through...Ch. 26 - Figure 26-19 shows four situations in which...Ch. 26 - In Fig. 26-20, a wire that carries a current...Ch. 26 - Figure 26-21 gives the electric potential Vx...Ch. 26 - The following table give the lengths of three...Ch. 26 - Prob. 9QCh. 26 - Three wires, of the same diameter, are connected...
Ch. 26 - Figure 26-23 gives, for three wires of radius R,...Ch. 26 - During the 4.0 min a 5.0 A current is set up in a...Ch. 26 - An isolated conducting sphere has a 10 cm radius....Ch. 26 - A charged belt, 50 cm wide, travels at 30 m/s...Ch. 26 - The United States National Electric Code, which...Ch. 26 - SSM WWW A beam contains 2.0 108 doubly charged...Ch. 26 - A certain cylindrical wire carries current. We...Ch. 26 - A fuse in an electric circuit is a wire that is...Ch. 26 - Prob. 8PCh. 26 - The magnitude Jr of the current density in a...Ch. 26 - The magnitude J of the current density in a...Ch. 26 - What is the current in a wire of radius R = 3.40...Ch. 26 - Near Earth, the density of protons in the solar...Ch. 26 - Prob. 13PCh. 26 - A human being can be electrocuted if a current as...Ch. 26 - SSM A coil is formed by winding 250 turns of...Ch. 26 - Copper and aluminium are being considered for a...Ch. 26 - Prob. 17PCh. 26 - A wire 4.00 m long and 6.00 mm in diameter has a...Ch. 26 - SSM What is the resistivity of a wire of 1.0 mm...Ch. 26 - Prob. 20PCh. 26 - ILW A common flashlight bulb is rated at 0.30 A...Ch. 26 - Kiting during a storm. The legend that Benjamin...Ch. 26 - Prob. 23PCh. 26 - GO Figure 26-25a gives the magnitude Ex of the...Ch. 26 - SSM ILW A wire with a resistance of 6.0 is drawn...Ch. 26 - In Fig. 26-26a. a 9.00 V battery is connected to a...Ch. 26 - SSM WWW Two conductors are made of the same...Ch. 26 - GO Figure 26-27 gives the electric potential Vx...Ch. 26 - Prob. 29PCh. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - Prob. 33PCh. 26 - GO Figure 26-29 shows wire section 1 of diameter...Ch. 26 - GO In Fig. 26-30, current is set up through a...Ch. 26 - GO Swimming during a storm. Figure 26-31 shows a...Ch. 26 - Prob. 37PCh. 26 - In Fig. 26-32a, a 20 resistor is connected to a...Ch. 26 - A certain brand of hot-dog cooker works by...Ch. 26 - Thermal energy is produced in a resistor at a rate...Ch. 26 - SSM A 1220 V potential difference is applied to a...Ch. 26 - In Fig. 26-33, a battery of potential difference V...Ch. 26 - ILW An unknown resistor is connected between the...Ch. 26 - A student kept his 6.0 V, 7.0 W radio turned on at...Ch. 26 - SSM ILW A 1250 W radiant heater is constructed to...Ch. 26 - A copper wire of cross-sectional area 2.00 106 m2...Ch. 26 - A heating element is made by maintaining a...Ch. 26 - Exploding shoes. The rain-soaked shoes of a person...Ch. 26 - A 100 W lightbulb is plugged into a standard 120 V...Ch. 26 - GO The current through the battery and resistors 1...Ch. 26 - GO SSM WWW Wire C and wire D are made from...Ch. 26 - GO The current-density magnitude in a certain...Ch. 26 - A 120 V potential difference is applied to a space...Ch. 26 - Go Figure 26-36a shows a rod of resistive...Ch. 26 - SSM A Nichrome heater dissipates 500 W when the...Ch. 26 - Prob. 56PCh. 26 - An 18.0 W device has 9.00 V across it. How much...Ch. 26 - An aluminum rod with a square cross section is 1.3...Ch. 26 - A cylindrical metal rod is 1.60 m long and 5.50 mm...Ch. 26 - The chocolate crumb mystery. This story begins...Ch. 26 - SSM A steady beam of alpha particles q = 2e...Ch. 26 - A resistor with a potential difference of 200 V...Ch. 26 - A 2.0 kW heater element from a dryer has a length...Ch. 26 - cylindrical resistor of radius 5.0 mm and length...Ch. 26 - A potential difference V is applied to a wire of...Ch. 26 - The headlights of a moving car require about 10 A...Ch. 26 - A 500 W heating unit is designed to operate with...Ch. 26 - The copper windings of a motor have a resistance...Ch. 26 - How much electrical energy is transferred to...Ch. 26 - A caterpillar of length 4.0 cm crawls in the...Ch. 26 - Prob. 71PCh. 26 - A steel trolley-car rail has a cross-sectional...Ch. 26 - A coil of current-carrying Nichrome wire is...Ch. 26 - Prob. 74PCh. 26 - A certain x-ray tube operates at a current of 7.00...Ch. 26 - A current is established in a gas discharge tube...Ch. 26 - Prob. 77PCh. 26 - An insulating belt moves at speed 30 m/s and has a...Ch. 26 - In a hypothetical fusion research lab, high...Ch. 26 - When a metal rod is heated, not only its...Ch. 26 - A beam of 16 MeV deuterons from a cyclotron...Ch. 26 - A linear accelerator produces a pulsed beam of...Ch. 26 - An electric immersion heater normally takes 100...Ch. 26 - A 400 W immersion heater is placed in a pot...Ch. 26 - A 30 F capacitor is connected across a programmed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
___________________________________________________
65. Determine the molecular geometry of each molecule.
(a) ...
Introductory Chemistry (6th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Ice cubes can disappear and food can dry out (freezer burn) in the freezer. That happens to the ice?
Fundamentals Of Thermodynamics
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 200-km-long high-voltage transmission line 2.9 cm in diameter carries a steady current of 1000 A. If the conductor is copper with a free charge density of 8.50×1028 electrons per cubic meter, what is the drift velocity (in µm/s) of the electrons?arrow_forwardDo it quickly, will upvote you.arrow_forwardA strip of doped silicon 260.0 um wide contains 8.80 x 10-2 conduction electrons per cubic meter and an insignificant number of holes. When the strip carries a current of 102 µA, the drift speed of the electrons is 59.6 cm/s. What is the thickness of the strip? Umarrow_forward
- A conductor has a cross-sectional area of 2.3x 10P m and the number of free electrons per unit volume is 8.5x 1028 electron/m³. When the current is 6.1 A, find the drift speed (in mm/s) of the electrons. Use the charge of the electron to be 1.6x1019 C. Select one: OA 0.26 OB. 25.60 OC.0.13 OD. 19.50 OE 0.20arrow_forwardThe current density in a wire is uniform and has magnitude 2.0 * 10^6 A/m2, the wire’s length is 5.0 m, and the density of conduction electrons is 8.49 *10^28 m ohm3. How long does an electron take (on the average) to travel the length of the wire?arrow_forwardA copper wire has a circular cross section with a radius of 1.06 mm. (a) If the wire carries a current of 3.38 A, find the drift speed (in m/s) of electrons in the wire. (Take the density of mobile charge carriers in copper to be n = 1.10 ✕ 1029 electrons/m3.) ???m/s (b) For the same wire size and current, find the drift speed (in m/s) of electrons if the wire is made of aluminum with n = 2.11 ✕ 1029 electrons/m3. ???m/sarrow_forward
- An 18 gauge copper wire (diameter 1.02 mm) carries a current with a current density of 3.20 * 106 A/m2. The density of free electrons for copper is 8.5 * 1028 electrons per cubic meter. Calculate (a) the current in the wire and (b) the magnitude of the drift velocity of electrons in the wire.arrow_forwardA spool of copper wire 290 m long and with a diameter of 0.440 mm is at 20.0°C. For copper, the resistivity is 1.70 x 10 8 .m and the temperature coefficient of resistivity is 3.90 x 10- (°C)-1. (a) What is the magnitude of the electric field (in V/m) in the wire if it carries a current of 0.550 A? V/m (b) What is the electric power (in W) delivered to the spool while it carries a current of 0.550 A? W (c) What is the power (in W) delivered to the spool if the potential difference across the wire is held constant and the temperature is increased to 400°C? Warrow_forwardAn aluminum wire with a diameter of 0.115 mm has a uniform electric field of 0.195 V/m imposed along its entire length. The temperature of the wire is 45.0°C. Assume one free electron per atom. (a) Use the information in this Table of Resistivities and Temperature Coefficients to determine the resistivity (in S2. m) of aluminum at this temperature. (b) What is the current density (in MA/m2) in the wire? MA/m2 (c) What is the total current (in mA) in the wire? I = mAarrow_forward
- When a current flows in an aluminum wire of diameter 4.45 mm, the drift speed of the conduction electrons is 0.000237 m/s. How many electrons are flowing past a given point each second? The conduction electron density in aluminum is 6.00 × 1028 m-³.arrow_forwardA 4.5 m length of copper wire at 25°C has a radius 0.30 mm. If a potential difference of 12.0V is applied across the length of the wire, determine the current in the wire if it is heated to 30°C. a=4x1o^-3/°C and p=1.7×10^-8 Qm*arrow_forwardIn a 100-m-long conductor of cylindrical cross-section (radius ro = 5 mm), the axial current density is J = î2 A/m². The conductivity is o= 5.8-107 S/m. Find a) the current flowing through the conductor, b) the voltage across the entire length of the conductor, c) the overall resistance of the conductor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY