(a)
The resistance of each light bulb.
(a)
Answer to Problem 34AP
The resistance of lightbulb A is
Explanation of Solution
Given information: Power of light bulb A is
Formula to calculate the resistance of lightbulb A.
Here,
Substitute
Thus, the resistance of lightbulb A is
Formula to calculate the resistance of lightbulb B.
Here,
Substitute
Thus, the resistance of lightbulb B is
Conclusion:
Therefore, the resistance of lightbulb A is
(b)
The time interval through which
(b)
Answer to Problem 34AP
The time interval through which
Explanation of Solution
Given information: Power of light bulb A is
Formula to calculate the current flowing in th light bulb A.
Here,
Substitute
Thus, the current flowing in th light bulb A is
Formula to calculate the time interval through which
Here,
Substitute
Thus, the time interval through which
Conclusion:
Therefore, the time interval through which
(c)
The reason that this charge is different upon its exit versus its entry into the light bulb or not.
(c)
Answer to Problem 34AP
This charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.
Explanation of Solution
Given information: Power of light bulb A is
No, the existing charge is the same amount as the entering charge into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.
Thus, this charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.
Conclusion:
Therefore, this charge is not different upon its exit versus its entry into the light bulb because the current is charged over the time and is the same everywhere on the series circuit.
(d)
The time interval through which
(d)
Answer to Problem 34AP
The time interval through which
Explanation of Solution
Given information: Power of light bulb A is
Formula to calculate the time interval through which
Here,
Substitute
Thus, the time interval through which
Conclusion:
Therefore, the time interval through which
(e)
The mechanism through which this energy enter and exit the light bulb.
(e)
Answer to Problem 34AP
The mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.
Explanation of Solution
Given information: Power of light bulb A is
In this mechanism, the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.
Thus, the mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.
Conclusion:
Therefore, the mechanism through which this energy enter and exit the light bulb is that the bulb is connected to the electrical energy source by wires, usually by a wire like copper, which mainly carries the current of electrons into and out the bulb.
(f)
The cost of running light bulb A continuously for
(f)
Answer to Problem 34AP
The cost of running light bulb A continuously for
Explanation of Solution
Given information: Power of light bulb A is
Write the expression for the energy for light bulb A works continuously for
Here,
Substitute
Thus, the energy for light bulb A works continuously for
Formula to calculate the cost of running light bulb A continuously for
Here,
Substitute
Thus, the cost of running light bulb A continuously for
Conclusion:
Therefore, the cost of running light bulb A continuously for
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers with Modern Physics
- Lightbulb A is marked 25.0 W 120. V, and lightbulb B is marked 100. W 120. V. These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120.-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.00 C pass into lightbulb A? (c) Is this charge different upon its exit versus its entry into the lightbulb? Explain. (d) In what time interval does 1.00 J pass into lightbulb A? (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at 0.110 per kWh.arrow_forwardPower P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forwardIf the terminals of a battery with zero internal resistance are connected across two identical resistors in series, the total power delivered by the battery is 8.00 W. If the same battery is connected across the same resistors in parallel, what is the total power delivered by the battery? (a) 16.0 W (b) 32.0 W (c) 2.00 W (d) 4.00 W (e) none of those answersarrow_forward
- When resistors with different resistances are connected in parallel, which of the following must be the same for each resistor? Choose all correct answers, (a) potential difference (b) current (c) power delivered (d) charge entering each resistor in a given time interval (e) none of those answersarrow_forwardA battery is used to charge a capacitor through a resistor as shown in Figure P27.44. Show that half the energy supplied by the battery appears as internal energy in the resistor and half is stored in the capacitor. Figure P27.44arrow_forwardA child's electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 inseries with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and itsbatteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forward
- The batteries of a submerged non-nuclear submarine supply 1000 A at full speed ahead. How long does it take to move Avogadro’s number (6.02 1023) of electrons at this rate?arrow_forward(b) Consider a particular phone that has a battery rated at 4,000 mAh. The battery operates at a potential difference of 3.90 V. How much energy, in units of kilowatt-hours, is stored in a fully charged battery? kWh (c) If electricity costs $0.12 (or 12.0 cents) per kilowatt-hour, what is the value of the total amount of energy stored in this battery? Express your answer in cents (or 0.01 of a dollar). ¢ (d) When the phone is idle (that is, turned on but not making calls or texts, using GPS, or running any power-hungry apps), it will operate continuously for 29.2 hours from a fully charged battery, until the battery runs out. How much average current does the phone draw while idle? Express your answer in milliamperes. mAarrow_forwardLightbulb A is marked “25.0 W 120. V,” and lightbulb B ismarked “100. W 120. V.” These labels mean that each lightbulbhas its respective power delivered to it when it is connected toa constant 120. - V source. (a) Find the resistance of each lightbulb.(b) During what time interval does 1.00 C pass into lightbulbA? (c) Is this charge different upon its exit versus its entryinto the lightbulb? Explain. (d) In what time interval does1.00 J pass into lightbulb A? (e) By what mechanisms does thisenergy enter and exit the lightbulb? Explain. (f ) Find the costof running lightbulb A continuously for 30.0 days, assumingthe electric company sells its product at $0.110 per kWh.arrow_forward
- A lamp in a child's Halloween costume flashes based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.250 s, during which it produces an average 0.520 W from an average 3.00 V. (a) What energy (in joules) does it dissipate? (b) How much charge (in coulombs) moves through the lamp? C (c) Find the capacitance (in farads). F (d) What is the resistance (in ohms) of the lamp? Ωarrow_forwardLightbulb A is marked "10 W 120 V", and lightbulb B is marked "25 W 120 V". These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.70 C pass into lightbulb A? (c) In what time interval does 2.00 J pass into lightbulb A? (d) Find the cost of running lightbulb A continuously for 16.0 days, assuming the electric company sells its product at $0.110 per kWh. See image for full questionarrow_forwardA 10.0-MΩ resistor is connected in series with a 5.00-μF capacitor. When a switch is thrown, these circuit elements are connected to a 24.0-V battery of negligible internal resistance. The capacitor is initially uncharged. (a) What is the current in the circuit immediately after the switch is moved so that charging begins? (b) What is the charge on the capacitor once it is fully charged? (c) Find the capacitor charge, current, power provided by the battery, power taken in by the resistor, and power taken in by the capacitor at t = 50.0 s. (d) When the capacitor is fully charged, find the total energy that has been delivered by the battery and the total energy that has been delivered to the capacitor.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning