![Physics for Scientists and Engineers with Modern Physics](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_largeCoverImage.gif)
(a)
A spreadsheet for
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 46AP
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Explanation of Solution
Given information: Th first symbol i.e. Euler’s number is
It is given that the expression for the current-voltage characteristic curve for a semiconductor diode as a function of temperature
Here,
Formula to calculate the resistance across the diode is,
Here,
The value of magnitude of electron charge is
The value of Boltzmann’s constant is
The value of voltage across the diode varies from
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Conclusion:
Therefore, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
(b)
To draw: The graph for
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 46AP
The graph for
The graph for
The graph for
Explanation of Solution
Given information: The first symbol i.e. Euler’s number is
The different values of the
Thus, the graph for
The different values of the
Thus, the graph for
The different values of the
The graph for
Conclusion:
Therefore, the graph for
Therefore, the graph for
Therefore, the graph for
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers with Modern Physics
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)