Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 26.6CQ
An air-filled capacitor is charged, then disconnected from the power supply, and finally connected to a voltmeter. Explain how and why the potential difference changes when a dielectric is inserted between the plates of the capacitor.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 26 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 26 - A capacitor stores charge Q at a potential...Ch. 26 - Many computer keyboard buttons are constructed of...Ch. 26 - Two capacitors are identical. They can be...Ch. 26 - You have three capacitors and a battery. In which...Ch. 26 - If you have ever tried to hang a picture or a...Ch. 26 - A fully charged parallel-plate capacitor remains...Ch. 26 - By what factor is the capacitance of a metal...Ch. 26 - An electronics technician wishes to construct a...Ch. 26 - A parallel-plate capacitor is connected to a...Ch. 26 - If three unequal capacitors, initially uncharged,...
Ch. 26 - Assume a device is designed to obtain a large...Ch. 26 - (i) What happens to the magnitude of the charge...Ch. 26 - A capacitor with very large capacitance is in...Ch. 26 - A parallel-plate capacitor filled with air carries...Ch. 26 - (i) A battery is attached to several different...Ch. 26 - A parallel-plate capacitor is charged and then is...Ch. 26 - (i) Rank the following five capacitors from...Ch. 26 - True or False? (a) From the definition of...Ch. 26 - You charge a parallel-plate capacitor, remove it...Ch. 26 - (a) Why is it dangerous to touch the terminals of...Ch. 26 - Assume you want to increase the maximum operating...Ch. 26 - If you were asked to design a capacitor in which...Ch. 26 - Prob. 26.4CQCh. 26 - Explain why the work needed to move a particle...Ch. 26 - An air-filled capacitor is charged, then...Ch. 26 - The sum of the charges on both plates of a...Ch. 26 - Because the charges on the plates of a...Ch. 26 - (a) When a battery is connected to the plates of a...Ch. 26 - Two conductors having net charges of +10.0 C and...Ch. 26 - (a) How much charge is on each plate of a 4.00-F...Ch. 26 - An air-filled parallel-plate capacitor has plates...Ch. 26 - A 50.0-in length of coaxial cable has an inner...Ch. 26 - (a) Regarding (lie Earth and a cloud layer 800 m...Ch. 26 - When a potential difference of 150 V is applied to...Ch. 26 - Prob. 26.8PCh. 26 - An air-filled capacitor consists of two parallel...Ch. 26 - A variable air capacitor used in a radio tuning...Ch. 26 - An isolated, charged conducting sphere of radius...Ch. 26 - Review. A small object of mass m carries a charge...Ch. 26 - Two capacitors, C1 = 5.00 F and C2 = 12.0 F, are...Ch. 26 - What If? The two capacitors of Problem 13 (C1 =...Ch. 26 - Find the equivalent capacitance of a 4.20-F...Ch. 26 - Prob. 26.16PCh. 26 - According to its design specification, the timer...Ch. 26 - Why is the following situation impossible? A...Ch. 26 - For the system of four capacitors shown in Figure...Ch. 26 - Three capacitors are connected to a battery as...Ch. 26 - A group of identical capacitors is connected first...Ch. 26 - (a) Find the equivalent capacitance between points...Ch. 26 - Four capacitors are connected as shown in Figure...Ch. 26 - Consider the circuit shown in Figure P26.24, where...Ch. 26 - Find the equivalent capacitance between points a...Ch. 26 - Find (a) the equivalent capacitance of the...Ch. 26 - Two capacitors give an equivalent capacitance of...Ch. 26 - Two capacitors give an equivalent capacitance of...Ch. 26 - Consider three capacitors C1, C2. and C3 and a...Ch. 26 - The immediate cause of many deaths is ventricular...Ch. 26 - A 12.0-V battery is connected to a capacitor,...Ch. 26 - A 3.00-F capacitor is connected to a 12.0-V...Ch. 26 - As a person moves about in a dry environment,...Ch. 26 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 26 - Two identical parallel-plate capacitors, each with...Ch. 26 - Two identical parallel-plate capacitors, each with...Ch. 26 - Two capacitors, C1 = 25.0 F and C2 = 5.00 F, are...Ch. 26 - A parallel-plate capacitor has a charge Q and...Ch. 26 - Review. A storm cloud and the ground represent the...Ch. 26 - Consider two conducting spheres with radii R1 and...Ch. 26 - Review. The circuit in Figure P26.41 (page 804)...Ch. 26 - A supermarket sells rolls of aluminum foil,...Ch. 26 - (a) How much charge can be placed 011 a capacitor...Ch. 26 - The voltage across an air-filled parallel-plate...Ch. 26 - Determine (a) the capacitance and (b) the maximum...Ch. 26 - A commercial capacitor is to be constructed as...Ch. 26 - A parallel-plate capacitor in air has a plate...Ch. 26 - Each capacitor in the combination shown in Figure...Ch. 26 - A 2.00-nF parallel-plate capacitor is charged to...Ch. 26 - A small rigid object carries positive and negative...Ch. 26 - An infinite line of positive charge lies along the...Ch. 26 - A small object with electric dipole moment p is...Ch. 26 - The general form of Gausss law describes how a...Ch. 26 - Find the equivalent capacitance of' the group of...Ch. 26 - Four parallel metal plates P1, P2, P3, and P4,...Ch. 26 - For (he system of four capacitors shown in Figure...Ch. 26 - A uniform electric field E = 3 000 V/m exists...Ch. 26 - Two large, parallel metal plates, each of area A,...Ch. 26 - A parallel-plate capacitor is constructed using a...Ch. 26 - Why is the following situation impossible? A...Ch. 26 - Prob. 26.61APCh. 26 - A parallel-plate capacitor with vacuum between its...Ch. 26 - A 10.0-F capacitor is charged to 15.0 V. It is...Ch. 26 - Assume that the internal diameter of the...Ch. 26 - Two square plates of sides are placed parallel to...Ch. 26 - (a) Two spheres have radii a and b, and their...Ch. 26 - A capacitor of unknown capacitance has been...Ch. 26 - A parallel-plate capacitor of plate separation d...Ch. 26 - Prob. 26.69APCh. 26 - Example 25.1 explored a cylindrical capacitor of...Ch. 26 - To repair a power supply for a stereo amplifier,...Ch. 26 - The inner conductor of a coaxial cable has a...Ch. 26 - Some physical systems possessing capacitance...Ch. 26 - Consider two long, parallel, and oppositely...Ch. 26 - Determine the equivalent capacitance of the...Ch. 26 - A parallel-plate capacitor with plates of area LW...Ch. 26 - Calculate the equivalent capacitance between...Ch. 26 - A capacitor is constructed from two square,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Electronic flash units for cameras contain a capacitor for storing the energy used to produce the flash. In one such unit the flash lasts for 1/675 fraction of a second with an average light power output of 270 kW. (a) If the conversion of electrical energy to light is 95% efficient (because the rest of the energy goes to thermal energy), how much energy must be stored in the capacitor for one flash? (b) The capacitor has a potential difference between its plates of 125 V when the stored energy equals the value stored in part (a). What is the capacitance?arrow_forwardWhen a Leyden jar is charged by a hand generator (Fig. 27.1, page 828), the work done by the person turning the crank is stored as electric potential energy in the jar. When a capacitor is charged by a battery, where does the electric potential energy come from?arrow_forwardCalculate the equivalent capacitance between points a and b in Figure P26.77. Notice that this system is not a simple series or parallel combination. Suggestion: Assume a potential difference v between [joints a and b. Write expressions for vab in terms of the charges and capacitances for the various possible pathways from a to b and require conservation of charge for those capacitor plates that are connected to each other.arrow_forward
- A commercial capacitor is to be constructed as shown in Figure P25.27. This particular capacitor is made from two strips of aluminum foil separated by a strip of paraffin-coated paper. Each strip of foil and paper is 7.00 cm wide. The foil is 0.004 00 mm thick, and the paper is 0.025 0 mm thick and has a dielectric constant of 3.70. What length should the strips have if a capacitance of 9.50 108 F is desired before the capacitor is rolled up? (Adding a second strip of paper and rolling the capacitor would effectively double its capacitance by allowing charge storage on both sides of each strip of foil.) Figure P25.27arrow_forwardA parallel-plate capacitor is connected to a battery. What happens to the stored energy if the plate separation is doubled while the capacitor remains connected to the battery? (a) It remains the same, (b) It is doubled. (c) It decreases by a factor of 2. (d) It decreases by a factor of 4. (e) It increases by a factor of 4.arrow_forwardA parallel-plate capacitor has plates of area A = 7.00 102 m2 separated by distance d = 2.00 104 m. (a) Calculate the capacitance if the space between the plates is filled with air. What is the capacitance if the space is filled half with air and half with a dielectric of constant = 3.70 as in (b) Figure P16.56a, and (c) Figure P16.56b? (Hint: In (b) and (c), one of the capacitors is a parallel combination and the other is a series combination.) Figure P16.56arrow_forward
- A parallel-plate capacitor has capacitance 3.00 F. (a) How much energy is stored in the capacitor if it is connected to a 6.00-V battery? (b) If the battery is disconnected and the distance between the charged plates doubled, what is the energy stored? (c) The battery is subsequently reattached to the capacitor, but the plate separation remains as in part (b). How much energy is stored? (Answer each part in microjoules.)arrow_forwardA parallel-plate capacitor has square plates that are 8.00 cm on each side and 3.80 mm apart. The space between the plates is completely filled with two square slabs of dielectric, each 8.00 cm on a side and 1.90 mm thick. One slab is Pyrex glass and the other slab is polystyrene. If the potential difference between the plates is 86.0 V, find how much electrical energy can be stored in this capacitor.arrow_forwardTrue or False? (a) From the definition of capacitance C = Q/V it follows that an uncharged capacitor has a capacitance of zero. (b) As described by the definition of capacitance, the potential difference across an uncharged capacitor is zero.arrow_forward
- A capacitor is constructed from two square, metallic plates of sides and separation d. Charges +Q and Q are placed on the plates, and the power supply is then removed. A material of dielectric constant K is inserted a distance x into the capacitor as shown in Figure P20.85. Assume d is much smaller than x. (a) Find the equivalent capacitance of the device. (b) Calculate the energy stored in the capacitor. (c) Find the direction and magnitude of the force exerted by the plates on the dielectric. (d) Obtain a numerical value for the force when x = /2, assuming = 5.00 cm, d = 2.00 mm, the dielectric is glass ( = 4.50), and the capacitor was charged to 2.00 103 V before the dielectric was inserted. Suggestion: The system can be considered as two capacitors connected in parallel. Figure P20.85arrow_forwardA variable air capacitor used in a radio tuning circuit is made of N semicircular plates, each of radius R and positioned a distance d from its neighbors, to which it is electrically connected. As shown in Figure P20.38, a second identical set of plates is enmeshed with the first set. Each plate in the second set is halfway between two plates of the first set. The second set can rotate as a unit. Determine the capacitance as a function of the angle of rotation , where = 0 corresponds to the maximum capacitance. Figure P20.38arrow_forwardThe dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of 1.60107 V/m. The capacitor has to have a capacitance of 1.25 nF and must be able to withstand a maximum potential difference 5.5 kV. What is the minimum area the plates of the capacitor may have?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY