Concept explainers
Two capacitors, C1 = 18.0 μF and C2 = 36.0 μF, are connected in series, and a 12.0-V battery is connected across the two capacitors. Find (a) the equivalent capacitance and (b) the energy stored in this equivalent capacitance. (c) Find the energy stored in each individual capacitor. (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always be true, or docs it depend on the number of capacitors and their capacitances? (f) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? (g) Which capacitor stores more energy in this situation, C1 or C2?
(a)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitors
Formula to calculate the equivalent capacitance of the system when they are connected in series.
Here,
Substitute
Thus, the equivalent capacitance of the system is
Conclusion:
Therefore, the equivalent capacitance of the system is
(b)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored in this equivalent capacitance.
Here,
Substitute
Thus, the energy stored in this equivalent capacitance is
Conclusion:
Therefore, the energy stored in this equivalent capacitance is
(c)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
In series connection, the charge will be same in capactor 1 and capacitor 2,
It is given that the total voltage of the battery is
Write the expression to calculate the voltage across capacitor 1.
Substitute
Substitute
Thus, the voltage across capacitor 2 is
Substitute
Thus, the voltage across capacitor 1 is
Formula to calculate the energy stored in the capacitor 1.
Here,
Substitute
Thus, the energy stored in the capacitor 1 is
Formula to calculate the energy stored in the capacitor 2.
Here,
Substitute
Thus, the energy stored in the capacitor 2 is
Conclusion:
Therefore, the energy stored in the capacitor 1 is
(d)
To show: The sum of these two energies is the same as the energy found in part (b).
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The energy stored in this equivalent capacitance is
The energy stored in the capacitor 1 is
The energy stored in the capacitor 2 is
Formula to calculate the sum of these two energies.
Here,
Substitute
Thus, the sum of these two energies is the same as the energy found in part (b).
Conclusion:
Therefore, the sum of these two energies is the same as the energy found in part (b) is
(e)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored by the capacitor in series.
Here,
Formula to calculate the energy stored by the capacitor in parallel.
Here,
The value of the energy stored by the capacitor in series and the energy stored by the capacitor in parallel are equal so, this equality will always be true.
Thus, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
Conclusion:
Therefore, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
(f)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
If the same capacitors are connected in parallel.
Formula to calculate the equivalent capacitance of the system when they are connected in parallel.
Here,
The energy stored in this equivalent capacitance is
Formula to calculate the required potential difference across them so that the combination stores the same energy as in part (b).
Substitute
Substitute
Thus, the required potential difference across them so that the combination stores the same energy as in part (b) is
Conclusion:
Therefore, the required potential difference across them so that the combination stores the same energy as in part (b) is
(g)
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitor
Thus, the capacitor
Conclusion:
Therefore, the capacitor
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning