Get Ready for Organic Chemistry
Get Ready for Organic Chemistry
2nd Edition
ISBN: 9780321774125
Author: KARTY, Joel
Publisher: PEARSON
Question
Book Icon
Chapter 26, Problem 26.50P
Interpretation Introduction

Interpretation:

When polyethylene is made by free radical polymerization, the resulting polymer has a significant amount of branching, resulting in low-density polyethylene. When styrene undergoes free radical polymerization, on the other hand, very little branching occurs. This phenomenon is to be explained.

Concept introduction:

Free radical polymerization is an example of chain-growth polymerization, one general class of polymerization reactions. In chain-growth polymerization, reaction occurs at the end of the growing chain, and each reaction lengthens the polymer chain by a single repeating unit. Branching can occur during chain-growth polymerization if the reactive site becomes located somewhere in the middle of a chain. The free radical at one end of one growing chain encounters a hydrogen atom in the middle of another chain. After hydrogen atom abstraction, the original free radical has become a terminated closed-shell species and the reactive radical appears somewhere in the middle of another chain. Further polymerization at the new radical creates a branch in the chain. Due to this reason, polyethylene has a significant amount of branching. But in polystyrene, phenyl groups are present which sterically hinder the radicals that may abstract H atoms. Therefore, the bulky phenyl rings prevent branching.

Blurred answer
Students have asked these similar questions
1) Draw the control charts for the following data and interpret the result and also develop control limts for future use. 24 samples are taken each with a subgroup size of 3. Don't Use the standard excel template and analyze.
1) Draw the control charts for the following data and interpret the result and also develop control limts for future use. 24 samples are taken each with a subgroup size of 3. Problem to be solved both as an assignment and laboratory. Subgroup X₁ X2 X3 1 7 8 10 2 9 9 14 3 15 16 10 4 14 13 15 5 12 11 10 6 10 11 9 I 7 10 9 9 8 15 17 13 9 10 7 8 10 9 8 9 11 8 8 10 12 17 13 10 13 10 12 11 14 9 9 10 15 10 8 8 16 11 10 9 17 10 10 8 18 8 9 7 19 9 8 9 22222 10 10 11 9 10 9 11 9 10 12 12 11 14 2012 4
How much of each solution should be used to prepare 1L of a buffer solution with a pH of 9.45 using 3M Na2CO3 and 0.2M HCI? Given: Ka 1 = 4.3 × 10-7, Ka2 = 4.69 × 10-11

Chapter 26 Solutions

Get Ready for Organic Chemistry

Ch. 26 - Prob. 26.11PCh. 26 - Prob. 26.12PCh. 26 - Prob. 26.13PCh. 26 - Prob. 26.14PCh. 26 - Prob. 26.15PCh. 26 - Prob. 26.16PCh. 26 - Prob. 26.17PCh. 26 - Prob. 26.18PCh. 26 - Prob. 26.19PCh. 26 - Prob. 26.20PCh. 26 - Prob. 26.21PCh. 26 - Prob. 26.22PCh. 26 - Prob. 26.23PCh. 26 - Prob. 26.24PCh. 26 - Prob. 26.25PCh. 26 - Prob. 26.26PCh. 26 - Prob. 26.27PCh. 26 - Prob. 26.28PCh. 26 - Prob. 26.29PCh. 26 - Prob. 26.30PCh. 26 - Prob. 26.31PCh. 26 - Prob. 26.32PCh. 26 - Prob. 26.33PCh. 26 - Prob. 26.34PCh. 26 - Prob. 26.35PCh. 26 - Prob. 26.36PCh. 26 - Prob. 26.37PCh. 26 - Prob. 26.38PCh. 26 - Prob. 26.39PCh. 26 - Prob. 26.40PCh. 26 - Prob. 26.41PCh. 26 - Prob. 26.42PCh. 26 - Prob. 26.43PCh. 26 - Prob. 26.44PCh. 26 - Prob. 26.45PCh. 26 - Prob. 26.46PCh. 26 - Prob. 26.47PCh. 26 - Prob. 26.48PCh. 26 - Prob. 26.49PCh. 26 - Prob. 26.50PCh. 26 - Prob. 26.51PCh. 26 - Prob. 26.52PCh. 26 - Prob. 26.53PCh. 26 - Prob. 26.54PCh. 26 - Prob. 26.55PCh. 26 - Prob. 26.56PCh. 26 - Prob. 26.57PCh. 26 - Prob. 26.58PCh. 26 - Prob. 26.59PCh. 26 - Prob. 26.60PCh. 26 - Prob. 26.61PCh. 26 - Prob. 26.62PCh. 26 - Prob. 26.63PCh. 26 - Prob. 26.64PCh. 26 - Prob. 26.65PCh. 26 - Prob. 26.66PCh. 26 - Prob. 26.67PCh. 26 - Prob. 26.68PCh. 26 - Prob. 26.69PCh. 26 - Prob. 26.70PCh. 26 - Prob. 26.71PCh. 26 - Prob. 26.72PCh. 26 - Prob. 26.73PCh. 26 - Prob. 26.74PCh. 26 - Prob. 26.75PCh. 26 - Prob. 26.76PCh. 26 - Prob. 26.77PCh. 26 - Prob. 26.78PCh. 26 - Prob. 26.1YTCh. 26 - Prob. 26.2YTCh. 26 - Prob. 26.3YTCh. 26 - Prob. 26.4YTCh. 26 - Prob. 26.5YTCh. 26 - Prob. 26.6YTCh. 26 - Prob. 26.7YTCh. 26 - Prob. 26.8YTCh. 26 - Prob. 26.9YTCh. 26 - Prob. 26.10YTCh. 26 - Prob. 26.11YTCh. 26 - Prob. 26.12YTCh. 26 - Prob. 26.13YTCh. 26 - Prob. 26.14YTCh. 26 - Prob. 26.15YTCh. 26 - Prob. 26.16YTCh. 26 - Prob. 26.17YTCh. 26 - Prob. 26.18YTCh. 26 - Prob. 26.19YTCh. 26 - Prob. 26.20YTCh. 26 - Prob. 26.21YTCh. 26 - Prob. 26.22YTCh. 26 - Prob. 26.23YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY