Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 25, Problem 97P
To determine
The resistance of resistor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two capacitors of capacitance 3C and 5C (where C = 0.19 F) are connected in series with a resistor of resistance R = 9.5 Ω.
How long will it take the amount of charge in the circuit to drop by 75% in seconds?
The capacitor shown below has an initial voltage of 0.15 V before the switch is closed. The resistance is 8.5 x 106 ohms and the capacitance is 2.0 microfarads. How long after the switch is closed in seconds does it take for the voltage across the resistor to drop to 0.083 V?
R
CH
B
A
D
210 0
a
24 V
50 μ
320 0
First, what is the time constant of the circuit formed when a and c are connected? Give your ans
in ms to 3 significant digits.
Question 17
Next, what is the time constant of the circuit formed when b and c connected? Give your answe
ms to 3 significant digits.
Question 18
Finally, you perform the following sequence of events. The capacitor starts uncharged and the
switch is flipped to connect a and c. The capacitor is charged for 20 ms. The switch is then flipp
to connect b and c, and the capacitor is discharged for 26 ms, at which time the switch is set to
position where it is not in contact with either a or b. What is the voltage on the capacitor? Give
answer to 2 significant digits.
Chapter 25 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Power P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forwardIn the figure shown, the total resistance is 15.0 kΩ and the fem of the battery is 24.0 V.the time constant is measured at 24.0 µs calculate a) the total capacitance of the circuit and b) the time it takes the voltage through the resistor to reach 16.0 V after the switch is closed.arrow_forwardThe emf of a good car 12 V battery is 12.8 V. When it is starting the car, it sources 90 A and the terminal voltage drops to 11 V. Calculate the heat (in terms of joule) that is generated in the battery if it takes 1 second to start the car.arrow_forward
- In the circuit below, C1 = 1.64 x 10-6 F and R1 = 41.0 Ohms. The capacitor is initially charged , how much time passes after the switch is closed before the capacitor reaches 8.5 % of its initial value? Please give your answer in microseconds, 1 microsecond= 10-6 s.arrow_forwardQUESTION 6 a) What is the time constant for the circuit shown in the figure below if the value of ε = 12.0 V, R = 21.4 ohm, and C = 39.1 mF.? b) Suppose that the switch is closed and the capacitor starts to charge. How much of the charge will be accumulated on each plate of the capacitor after 3 s of charging? Submit the value of the charge (in mC, with tho decimal places) as your answer.arrow_forwardin the curcuit shown in the figure , the S switch is closed at t = 0 and the capacitors, which are completely empty, begin to fill. Here E = 20 V , C = 4uF and R = 30 ohm. a) what is the time constant of the circuit , T in units of microseconds? b)when t=T , what is the total charge , in units of microcloumb accumulated in the capacitors ?arrow_forward
- In the circuit shown, assume the battery emf is 16.2 V, R= 1.00 M2, and C= 3.20 µF. The switch is closed at t= 0. If the capacitor is initially discharged, then at what time twill the voltage across the capacitor be 15.0 V? R Carrow_forwardAn RC circuit with a time constant of 5e-3 seconds is being charged. How long does it take for the capacitor to reach half of its maximum charge? 2.38 s 8.23e-4 s None of the above 138.63 s 3.47e-3 sarrow_forwardAn electrical circuit contains a capacitor of Z picofarads and a resistor of X ohms. If the capacitor is fully charged, and then the voltage is interrupted, in how much time will about 95% of its charge be transferred to the resistor? Show your calculations.arrow_forward
- Compute for the voltage Vbc in the circuit shown below.arrow_forwardhelp asaparrow_forwardIn (Figure 1), the total resistance is 12.0 kΩ , and the battery's emf is 26.0 V . The time constant is measured to be 14.0 μs . Calculate the total capacitance of the circuit. Calculate the time it takes for the voltage across the capacitor to reach 15.0 VV after the switch is closed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY