Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 25, Problem 87P
To determine
Explicitly whether the power supplied to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A capacitor of capacitance C is discharging through a resistance R. 
(A) in terms of the time constant T = RC, when will it charge be one-half of its initial value?
(B) when will the energy stored in the capacitor behalf of its initial value?
In the circuit shown in Fig. both capacitors are initially charged to 45.0 V. (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V, and (b) what will be the current at that time?
Six identical resistors, each with resistance R, are connected to an emf E. (a) In terms of E and R, what is the current I through each of the resistors if they are connected in parallel? (b) In series? (c) For which network of resistors, series or parallel, is the power consumed in each resistor greater?
Chapter 25 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using the exact exponential treatment, find how much time is required to charge an initially uncharged 132 pF capacitor through a 73 MΩ resistor to 90% of its final voltage.arrow_forwardA battery with emf E and internal resistance r is first connectedto a resistor of resistance R1 = R, where R is greater than r.This resistor is then disconnected from the battery and replaced with aresistorof resistance R2 = 2R. Find the ratio of the power dissipated in the second resistor to the power dissipated in the first resistor.arrow_forwardA battery of ɛ= 12 V is connected to a load resistor R= 3 O. If the terminal voltage across the battery is 10 Volt, then what is the value of the internal resistance r (in Q )? ww O 0.6 O 0.8 O 1.0 O 0.4 O 1.2arrow_forward
- Two batteries have the same emf E, but different internal resistances rị and r2 (r1 > r2) are connected in series to an external resistance R. (a) Find the value of R that makes the potential difference zero between the terminals of one battery. (b) Which battery is it?arrow_forwardA circuit made up of 6 resistors is shown in the figure, with resistances R1 = 11 N, R2 = 65 Q, R3 = 38 Q, R4 = 69 N, R5 = 85 Q, and R6= 45 Q. The total current going through the circuit is I= 18 A. R, R4 a R3 R R, Re |Calculate the value of AV, in volts.arrow_forward(b) Consider a particular phone that has a battery rated at 4,000 mAh. The battery operates at a potential difference of 3.90 V. How much energy, in units of kilowatt-hours, is stored in a fully charged battery? kWh (c) If electricity costs $0.12 (or 12.0 cents) per kilowatt-hour, what is the value of the total amount of energy stored in this battery? Express your answer in cents (or 0.01 of a dollar). ¢ (d) When the phone is idle (that is, turned on but not making calls or texts, using GPS, or running any power-hungry apps), it will operate continuously for 29.2 hours from a fully charged battery, until the battery runs out. How much average current does the phone draw while idle? Express your answer in milliamperes. mAarrow_forward
- Consider a resistor of 5Ω in series with a pair of parallel resistors, one of which is known to be 26Ω, the other isunknown. The equivalent resistance of all three is 27Ω. What is the unknown resistor?arrow_forwardin the curcuit shown in the figure , the S switch is closed at t = 0 and the capacitors, which are completely empty, begin to fill. Here E = 20 V , C = 4uF and R = 30 ohm. a) what is the time constant of the circuit , T in units of microseconds? b)when t=T , what is the total charge , in units of microcloumb accumulated in the capacitors ?arrow_forwardA capacitor with a capacitance of 3.5 uF is initially uncharged. It is connected in series with a switch of negligible resistance, a resistor with a resistance of 10.5 kOhm, and a battery that has a potential difference of 105V. (a) Immediately after the switch is closed, what is the voltage drop VC, in volts, across the capacitor? (b) Immediately after the switch is closed, what is the voltage drop VR, in volts, across the resistor? (c) Immediately after the switch is closed, what is the current, in amperes, through the resistor? (d) Find an expression for the time after the switch is closed when the current in the resistor equals half its maximum value. (e) What is the charge Q, in microcoulombs, on the capacitor when the current in the resistor equals one half its maximum value.arrow_forward
- (b) Consider a particular phone that has a battery rated at 2.500 mAh. The battery operates at a potential difference of 3.90 V. How much energy, in units of kilowatt-hours, is stored in a fully charged battery? 0.975-2 ✓kWh (c) If electricity costs $0.16 (or 16.0 cents) per kilowatt-hour, what is the value of the total amount of energy stored in this battery? Express your answer in cents (or 0.01 of a dollar). How can you relate the energy from part (b) to the cost per kilowatt-hour to find the total cost? (d) When the phone is idle (that is, turned on but not making calls or texts, using GPS, or running any power-hungry apps), it will operate continuously for 32.2 hours from a fully charged battery, until the battery runs out. How much average current does the phone draw while idle? Express your answer in milliamperes, MAarrow_forwardConsider the circuit shown in the figure below, where C, - 8.00 uF, C, - 8.00 uF, and AV = 22.0 V. Capacitor C, is first charged by closing switch S,. Switch S, is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S AV (a) Calculate the initial charge (in pC) acquired by C (Round your answer to at least one decimal place.) (b) Calculate the final charge (in uC) on each capacitor. (Round your answers to at least the nearest integer) (c) What 17 After a very long time, switch S, is also closed. By what amount does the charge on the second capacitor change after 5, has been closed for a very long time? (Give your answer in uC.)arrow_forwardIn the circuit shown (a) find the charge on each capacitor; (b) voltage across each capacitor and (c) voltage of the battery. Voltage acioss suF= 6V. 4uF A 3MF tcarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY