Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 35P
(a)
To determine
To Calculate:Number of protons per meter.
(b)
To determine
To Calculate: The number density of protons.
(c)
To determine
To Calculate:Current density in the beam.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electron beam emerging from an accelerator has a circular cross section of radius 1 mm. If the beam current is 8 μA, and the speed of the electrons is 3*108 m/s, then the number density of the electrons (in 1010 m-3) in the beam is:
Protons in the cosmic rays strike the earth’s upper atmosphere at a rate, averaged over the earth’s surface, of 0.15 protons/cm2 -sec. What total current does the earth receive from beyond its atmosphere in the form of incident cosmic ray protons? (Earth’s radius = 6.4×106 meters).
The current supplied by a battery as a function of time is I(t) = (0.56 A)e -t/(6.0 hr). What is the total number of electrons transported from the positive electrode to the negative electrode from the time the battery is first used until it is essentially dead? (e = 1.60 × 10-19 C)
Chapter 25 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10P
Ch. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62PCh. 25 - Prob. 63PCh. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - Prob. 70PCh. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 91PCh. 25 - Prob. 92PCh. 25 - Prob. 93PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97PCh. 25 - Prob. 98PCh. 25 - Prob. 99PCh. 25 - Prob. 100PCh. 25 - Prob. 101PCh. 25 - Prob. 102PCh. 25 - Prob. 103PCh. 25 - Prob. 104PCh. 25 - Prob. 105PCh. 25 - Prob. 106PCh. 25 - Prob. 107PCh. 25 - Prob. 108PCh. 25 - Prob. 109PCh. 25 - Prob. 110PCh. 25 - Prob. 111PCh. 25 - Prob. 112PCh. 25 - Prob. 113PCh. 25 - Prob. 114PCh. 25 - Prob. 115PCh. 25 - Prob. 116PCh. 25 - Prob. 117PCh. 25 - Prob. 118PCh. 25 - Prob. 119PCh. 25 - Prob. 120P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the current carried by a conductor is doubled, what happens to (a) the charge carrier density, (b) the current density, (c) the electron drift velocity, and (d) the average time interval between collisions?arrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardThe beam, consisting of electrons with constant kinetic energy and uniform density, carries a current of 1 mA. The cross-section-area of the beam is 23 mm², the electron density is 3x10^12 cm-3. If the electric current is directed to the right, what is the magnitude (m/s) and direction of the velocity of the electrons?arrow_forward
- In proton beam therapy, a beam of high-energy protons is used to kill cancerous cells in a tumor. In one system, the beam, which consists of protons with an energy of 2.8 x 10-11 J, has a current of 80 nA. The protons in the beam mostly come to rest within the tumor. The radiologist has ordered a total dose corresponding to 3.6 x 10-3 J of energy to be deposited in the tumor.a. How many protons strike the tumor each second?b. How long should the beam be on in order to deliver the required dose?arrow_forwardIn proton beam therapy, a beam of high-energy protons is used to kill cancerous cells in a tumor. In one system, the beam, which consists of protons with an energy of 2.8×10−11J2.8×10−11J, has a current of 76 nAnA. The protons in the beam mostly come to rest within the tumor. The radiologist has ordered a total dose corresponding to 3.4×10−3J3.4×10−3J of energy to be deposited in the tumor. A)How many protons strike the tumor each second? B)How long should the beam be on in order to deliver the required dose?arrow_forwardHI PLS PROVIDE A DETAILED AND COMPREHENSIVE SOLUTION THANK Uarrow_forward
- A copper wire used for house hold electrical outlets has a radius of 2.5 mm (1Imm = 10-*m). Each Copper atom donates one electron for conduction. If the electric current in this wire is 22.00 A, copper density is 8900 kg/m and its atomic mass is 64 u. (lu = 1.66 x 10-27 kg), the electrons drift velocity v in this wire is a) 1.90 x 10- m/s. b) 8.36 x 10 m/s, c) 1.60 x 10+ m/s. d) 1.42 x 104 m/s, e) None of the above.arrow_forwardA 320-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,040 A. If the conductor is copper with a free charge density of 8.5 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 107 for the number of seconds in a year.) yrarrow_forwardA beam of 16 MeV deuterons from a cyclotron strikes a copper block.The beam is equivalent to current of 15 mA. (a) At what rate do deuterons strike the block? (b) At what rate is thermal energy produced in the block?arrow_forward
- (1) Find the mass of the air at 20°C in a living room with a 3.66 m × 5.45 m floor and a ceiling of 3.00 m high. (2)Determine the separation distance between two protons if the magnitude of the electric force between these two particles is 2.3×10-26 N. (3) A potential difference of 12 V is found to produce a current of 0.40 A in a 3.2 m length of wire with a uniform radius of 0.40 cm. Calculate the resistivity of the wire.arrow_forwardProtons in an accelerator are moving at 4 x 106 and produce a beam current of 1 μA. If the radius of the beam id 1.8 mm, find: a) the current density: b) the density of particles: particles 771³arrow_forwardIn proton bean therapy, a beam of high-energy protons is used to kill canerous cells in a tumor. In one system, the beam, which consists of protons with an energy of 2.8×10^−11J, has a current of 80 nA.The protons in the beam mostly come to rest within the tumor. The radiologist has ordered a total dose corresponding to 3.8×10^−3 J of energy to be deposited in the tumor.Part A How many protons strike the tumor each second?Express your answer as a number of protons.Part B How long should the beam be on in order to deliver the required dose?Express your answer with the in seconds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY