Statics and Mechanics of Materials
2nd Edition
ISBN: 9780073398167
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.5, Problem 88P
A rectangular plate is supported by three cables as shown. Knowing that the tension in cable AC is 60 N, determine the weight of the plate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can you solve for v? Also, what is A x u
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0
kN, and T = 72 Nm.
The tube's outer diameter is 50 mm and the inner diameter is 45 mm.
Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J
polar moment inertial is 21.1 cm4.
Determine the following.
(1) The critical element(s) of the bar.
(2) Show the state of stress on a stress element for each critical element.
-120 mm-
F
A crate weighs 530 lb and is hung by three ropes attached to
a steel ring at A such that the top surface is parallel to the
xy plane. Point A is located at a height of h = 42 in above
the top of the crate directly over the geometric center of the
top surface. Use the dimensions given in the table below to
determine the tension in each of the three ropes.
2013 Michael Swanbom
↑ Z
C
BY NC SA
b
x
B
у
D
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable Value
a
30 in
b
43 in
с
4.5 in
The tension in rope AB is
lb
The tension in rope AC is
lb
The tension in rope AD is
lb
Chapter 2 Solutions
Statics and Mechanics of Materials
Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - A disabled automobile is pulled by means of two...Ch. 2.1 - Two forces are applied as shown to a hook support....Ch. 2.1 - A disabled automobile is pulled by means of two...
Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - For the hook support shown, determine by...Ch. 2.1 - The cable stays AB and AD help support pole AC....Ch. 2.1 - Solve Prob. 2.4 by trigonometry.Ch. 2.1 - For the hook support of Prob. 2.9, determine by...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.10 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.19 Determine the x and y components of...Ch. 2.2 - Member BD exerts on member ABC a force P directed...Ch. 2.2 - Member BC exerts on member AC a force P directed...Ch. 2.2 - Cable AC exerts on beam AB a force P directed...Ch. 2.2 - The hydraulic cylinder BD exerts on member ABC a...Ch. 2.2 - Prob. 24PCh. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - For the collar loaded as shown, determine (a) the...Ch. 2.2 - Prob. 29PCh. 2.2 - A hoist trolley is subjected to the three forces...Ch. 2.2 - For the post loaded as shown, determine (a) the...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - 2.33 and 2.34 Two cables are tied together at C...Ch. 2.3 - Prob. 34PCh. 2.3 - Prob. 35PCh. 2.3 - Prob. 36PCh. 2.3 - Two forces of magnitude TA=8 kips and TB=15 kips...Ch. 2.3 - Prob. 38PCh. 2.3 - Prob. 39PCh. 2.3 - Two forces P and Q are applied as shown to an...Ch. 2.3 - Prob. 41PCh. 2.3 - A sailor is being rescued using a boatswains chair...Ch. 2.3 - For the cables of Prob. 2.32, find the value of a...Ch. 2.3 - Prob. 44PCh. 2.3 - Prob. 45PCh. 2.3 - Prob. 46PCh. 2.3 - Two cables tied together at C are loaded as shown....Ch. 2.3 - Collar A is connected as shown to a 50-1b load and...Ch. 2.3 - Cogar A is connected as shown to a 50-lb load and...Ch. 2.3 - A movable bin and its contents have a combined...Ch. 2.3 - A 600 lb crate is supported by several...Ch. 2.3 - Prob. 52PCh. 2.3 - A 200-kg crate is to be supported by the...Ch. 2.3 - Prob. 54PCh. 2.3 - Prob. 55PCh. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - A gun is aimed at a point A located 35 east of...Ch. 2.4 - Prob. 61PCh. 2.4 - Determine the magnitude and direction of the force...Ch. 2.4 - Prob. 63PCh. 2.4 - Prob. 64PCh. 2.4 - Prob. 65PCh. 2.4 - Prob. 66PCh. 2.4 - Prob. 67PCh. 2.4 - Prob. 68PCh. 2.4 - Prob. 69PCh. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - Prob. 72PCh. 2.4 - Prob. 73PCh. 2.4 - Knowing that the tension is 425 lb in cable AB and...Ch. 2.4 - Knowing that the tension is 510 lb in cable AB and...Ch. 2.4 - A frame ABC is supported in part by cable DBE that...Ch. 2.4 - For the plate of Prob. 2.68, determine the...Ch. 2.4 - The boom OA carries a load P and is supported by...Ch. 2.4 - For the boom and loading of Prob. 2.78, determine...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A 1600-lb crate is supported by three cables as...Ch. 2.5 - Three wires are connected at point D, which is...Ch. 2.5 - Prob. 87PCh. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - Prob. 90PCh. 2.5 - Solve Prob. 2.90, assuming that a fiend is helping...Ch. 2.5 - Prob. 92PCh. 2.5 - Prob. 93PCh. 2.5 - Prob. 94PCh. 2.5 - Prob. 95PCh. 2.5 - Prob. 96PCh. 2.5 - Prob. 97PCh. 2.5 - Prob. 98PCh. 2.5 - Prob. 99PCh. 2.5 - Prob. 100PCh. 2.5 - Prob. 101PCh. 2.5 - Prob. 102PCh. 2.5 - Solve Prob. 2.102 assuming that y=275mm.Ch. 2 - Two structural members A and B are bolted to a...Ch. 2 - Determine the x and y components of each of the...Ch. 2 - The hydraulic cylinder BC exerts on member AB a...Ch. 2 - Prob. 107RPCh. 2 - Knowing that a=20, determine the tension (a) in...Ch. 2 - Prob. 109RPCh. 2 - Prob. 110RPCh. 2 - Prob. 111RPCh. 2 - Prob. 112RPCh. 2 - Prob. 113RPCh. 2 - A transmission tower is held by three guy wires...Ch. 2 - Prob. 115RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forwardDetermine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forward
- A block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z D (c, 0, d) C (a, 0, b), A e B y f m BY NC SA x 2016 Eric Davishahl Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m C 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is The compressive force in bar AB is The tension in cable S is N. kg.arrow_forwardTwo squirrels are sitting on the rope as shown. The squirrel at A has a weight of 1.2 lb. The squirrel at B found less food this season and has a weight of 0.8 lb. The angles 0 and > are equal to 50° and 60° respectively. Determine the tension force in each of the rope segments (T₁ in segment, T₂ in segment Я, and T3 in segment DD) as well as the angle a in degrees. Ө A α B Note the figure may not be to scale. T₁ = lb lb T2 T3 = = lb απ deg A BY NC SA 2013 Michael Swanbomarrow_forwardEach cord can sustain a maximum tension of 500 N. Determine the largest mass of pipe that can be supported. B 60° A E Harrow_forward
- 2. Link BD consists of a single bar 1 in. wide and 0.5 in. thick. Knowing that each pin has a in. diameter, determine (a) the maximum value of the normal stress in link BD and the bearing stress in link BD if 0 = 0, (b) the maximum value of the normal stress in link BD if 0 = 90. -6 in.- 12 in. 30° D 4 kipsarrow_forwardIn the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.arrow_forwardauto controlsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License