Statics and Mechanics of Materials
2nd Edition
ISBN: 9780073398167
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.1, Problem 1P
2.1 and 2.2 Determine graphically the magnitude and direction of the resultant of the two forces shown using (a) the parallelogram law, (b) the triangle rule.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve.
3. Two forces are applied to an eye bolt fastened to a beam. Determine graphically the magnitude and
direction of their resultant using (a) the parallelogram law, Use Fig 3.
4.5 kN
25
50
6 kN
Fig 3
3. Solve for the Resultant of the force system
shown and its direction with respect to the positive
x-axis.
300 N
40°
30°
400 N
200 N
Chapter 2 Solutions
Statics and Mechanics of Materials
Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - A disabled automobile is pulled by means of two...Ch. 2.1 - Two forces are applied as shown to a hook support....Ch. 2.1 - A disabled automobile is pulled by means of two...
Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - For the hook support shown, determine by...Ch. 2.1 - The cable stays AB and AD help support pole AC....Ch. 2.1 - Solve Prob. 2.4 by trigonometry.Ch. 2.1 - For the hook support of Prob. 2.9, determine by...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.10 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.19 Determine the x and y components of...Ch. 2.2 - Member BD exerts on member ABC a force P directed...Ch. 2.2 - Member BC exerts on member AC a force P directed...Ch. 2.2 - Cable AC exerts on beam AB a force P directed...Ch. 2.2 - The hydraulic cylinder BD exerts on member ABC a...Ch. 2.2 - Prob. 24PCh. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - For the collar loaded as shown, determine (a) the...Ch. 2.2 - Prob. 29PCh. 2.2 - A hoist trolley is subjected to the three forces...Ch. 2.2 - For the post loaded as shown, determine (a) the...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - 2.33 and 2.34 Two cables are tied together at C...Ch. 2.3 - Prob. 34PCh. 2.3 - Prob. 35PCh. 2.3 - Prob. 36PCh. 2.3 - Two forces of magnitude TA=8 kips and TB=15 kips...Ch. 2.3 - Prob. 38PCh. 2.3 - Prob. 39PCh. 2.3 - Two forces P and Q are applied as shown to an...Ch. 2.3 - Prob. 41PCh. 2.3 - A sailor is being rescued using a boatswains chair...Ch. 2.3 - For the cables of Prob. 2.32, find the value of a...Ch. 2.3 - Prob. 44PCh. 2.3 - Prob. 45PCh. 2.3 - Prob. 46PCh. 2.3 - Two cables tied together at C are loaded as shown....Ch. 2.3 - Collar A is connected as shown to a 50-1b load and...Ch. 2.3 - Cogar A is connected as shown to a 50-lb load and...Ch. 2.3 - A movable bin and its contents have a combined...Ch. 2.3 - A 600 lb crate is supported by several...Ch. 2.3 - Prob. 52PCh. 2.3 - A 200-kg crate is to be supported by the...Ch. 2.3 - Prob. 54PCh. 2.3 - Prob. 55PCh. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - A gun is aimed at a point A located 35 east of...Ch. 2.4 - Prob. 61PCh. 2.4 - Determine the magnitude and direction of the force...Ch. 2.4 - Prob. 63PCh. 2.4 - Prob. 64PCh. 2.4 - Prob. 65PCh. 2.4 - Prob. 66PCh. 2.4 - Prob. 67PCh. 2.4 - Prob. 68PCh. 2.4 - Prob. 69PCh. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - Prob. 72PCh. 2.4 - Prob. 73PCh. 2.4 - Knowing that the tension is 425 lb in cable AB and...Ch. 2.4 - Knowing that the tension is 510 lb in cable AB and...Ch. 2.4 - A frame ABC is supported in part by cable DBE that...Ch. 2.4 - For the plate of Prob. 2.68, determine the...Ch. 2.4 - The boom OA carries a load P and is supported by...Ch. 2.4 - For the boom and loading of Prob. 2.78, determine...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A 1600-lb crate is supported by three cables as...Ch. 2.5 - Three wires are connected at point D, which is...Ch. 2.5 - Prob. 87PCh. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - Prob. 90PCh. 2.5 - Solve Prob. 2.90, assuming that a fiend is helping...Ch. 2.5 - Prob. 92PCh. 2.5 - Prob. 93PCh. 2.5 - Prob. 94PCh. 2.5 - Prob. 95PCh. 2.5 - Prob. 96PCh. 2.5 - Prob. 97PCh. 2.5 - Prob. 98PCh. 2.5 - Prob. 99PCh. 2.5 - Prob. 100PCh. 2.5 - Prob. 101PCh. 2.5 - Prob. 102PCh. 2.5 - Solve Prob. 2.102 assuming that y=275mm.Ch. 2 - Two structural members A and B are bolted to a...Ch. 2 - Determine the x and y components of each of the...Ch. 2 - The hydraulic cylinder BC exerts on member AB a...Ch. 2 - Prob. 107RPCh. 2 - Knowing that a=20, determine the tension (a) in...Ch. 2 - Prob. 109RPCh. 2 - Prob. 110RPCh. 2 - Prob. 111RPCh. 2 - Prob. 112RPCh. 2 - Prob. 113RPCh. 2 - A transmission tower is held by three guy wires...Ch. 2 - Prob. 115RP
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
The following C++ program will not compile because the lines have been mixed up. cout Success\n; cout Success...
Starting Out with C++ from Control Structures to Objects (9th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.1 Two forces are applied at point B of beam AB. Determine graphi- cally the magnitude and direction of their resultant using (a) the parallelogram law, (h) the triangle rule. A B 60 3 kN 40° 2 KNarrow_forwardThe Four Forces shown have parallel lines of action. member AB is perpendicular to the line of action of these forces.arrow_forwardProblem 6 A force system is shown below. 50 N 90 N 40° 40 N-m 0.40 m 0.80 m 100 N a. Determine the magnitude of the resultant? b. Determine the angle that the resultant force makes with the x-axis? c. Determine the magnitude of the resultant moment acting at point 0? () 0.30 m 0.50 m ********* ******.*..arrow_forward
- A force P of magnitude 330 lb acts on the frame shown at point E. (a) Determine the rectangular representation of Force Vector P. (b) Determine the moment of P about point O. (c) Determine the moment of P about a line joining points O and D. 7.5 in. 7.5 in. 10 in E A 30 in. H D 10 in. x 10 in.arrow_forwardASAP ASAParrow_forward3.114 A couple of magnitude M = 80. lb in. and the three forces shown are applied to an angle bracket. (a) Find the resultant of this system of forces. (b) Locate the points where the line of action of the resultant intersects line AB and line BC. M 10 lb - 12 in. 25 lb 60° 8 in. 40 lbarrow_forward
- I need the answer as soon as possiblearrow_forward2.24 The two forces can be replaced by an equivalent force R acting at point B on the beam. Determine the distance b that locates B. (Hint: The combined moment of the two forces about any point is equal to the moment of R about the same point.) 3.5 m P A 5.5 m 2.5 m Barrow_forwardDetermine the resultant of the following forces using the analytical method C= 60 N, 240 degreesarrow_forward
- NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Two forces P and Q are applied as shown at point A of a hook support. Knowing that P = 75 N and Q = 195 N, determine graphically the magnitude and direction of their resultant using the parallelogram law. The magnitude of the resultant is N. The direction of the resultant considering OO' as the reference axis is ⦪ °.arrow_forwardGiven the system of forces shown below, Determine the following:(a) Moment of the 361-lb force about Point ‘B’(b) Moment of the 1,414-lb force about Point ‘A’(c) Moment of the 224-lb force about Point ‘C’(d) Resultant of the force system (Magnitude and Direction)(e) Moment of all the forces about Point ‘O’(f) Locate the ‘x’ and ‘y’ intercept using point ‘O’ as the referencearrow_forwardFor the force system shown, find the resultant force and itspoint of application with respect to point O along the x-axis, knowing that themoment around point O of said resultant force is 5000 N ∙ cmClockwise.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY