Predict/Calculate A light beam traveling in the negative z direction has a magnetic field
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Campbell Biology (11th Edition)
Concepts of Genetics (12th Edition)
Cosmic Perspective Fundamentals
Campbell Biology in Focus (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
- Consider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forwardAn electromagnetic wave with a peak magnetic field magnitude of 1.50 107 T has an associated peak electric field of what magnitude? (a) 0.500 1015 N/C (b) 2.00 105 N/C (c) 2.20 104 N/C (d) 45.0 N/C (e) 22.0 N/Carrow_forwardCASE STUDY In Example 34.6 (page 1111), we imagined equipping 1950DA, an asteroid on a collision course with the Earth, with a solar sail in hopes of ejecting it from the solar system. We found that the enormous size required for the solar sail makes the plan impossible at this time. Of course, there is no need to eject such an object from the solar system: we only need to change the orbit. A much more pressing problem is Apophis, a 300-m asteroid that may be on a collision course with the Earth and is due to come by on April 13, 2029. It is unlikely to hit the Earth on that pass, but it will return again in 2036. If Apophis passes through a 600-m keyhole on its 2029 pass, it is expected to hit the Earth in 2036. causing great damage. There are plans to deflect Apophis when it comes by in 2029. For example, we could hit it with a 10- to 150-kg impactor accelerated by a solar sail. The impactor is launched from the Earth to start orbiting the Sun in the same direction as the Earth and Apophis. The idea is to use a solar sail to accelerate the impactor so that it reverses direction and collides head-on with Apophis at 8090 km/s and thereby keeps Apophis out of the keyhole. Consider the momentum in the impactors orbit (Fig. P34.75) when the solar sail makes an angle of = 60 with the tangent to its orbit. Current solar sails may be about 40 m on a side, but the hope is to construct some that are about 160 m on a side. Estimate the impactors tangential acceleration when it is about 1 AU from the Sun. Keep in mind that the sail is neither a perfect absorber nor a perfect reflector, and a heavier impactor would presumably be equipped with a larger sail. Dont be surprised by what may seem like a very small acceleration. FIGURE P34.75arrow_forward
- You are working at NASA, in a division that is studying the possibility of rotating small spacecraft using radiation pressure from the Sun. You have built a scale model of a spacecraft as shown in Figure P33.47. The central body is a spherical shell with mass m = 0.500 kg and radius R = 15.0 cm. The thin rod extending from each side of the sphere is of mass mr = 50.0 g and of total length = 1.00 m. At each end of the rod arc circular plates of mass mp = 10.0 g and radius rp = 2.00 cm, with the center of each plate located at the end of the rod. One plate is perfectly reflecting and the other is perfectly absorbing. The initial configuration of this model is that it is at rest, mounted on a vertical axle with very low friction. To begin the simulation, you expose the model to sunlight of intensity Is = 1 000 W/m2, directed perpendicularly to the plates, for a time interval of t = 2.0 min. The sunlight is then removed from the model. Determine the angular velocity with which the model now rotates about the axle. Figure P33.47arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forward
- A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this solar sail. Suppose a sail of area A = 6.00 105 m2 and mass m =6.00 103 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1 370 W/m2. (a) What force is exerted on the sail? (b) What is the sails acceleration? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the moon, 3.84 108 m away, starting from rest at the Earth.arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forwardTwo infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forward
- A very large parallel-plate capacitor has uniform charge per unit area + on the upper plate and on the lower plate. The plates are horizontal, and both move horizontally with speed v to the right. (a) What is the magnetic field between the plates? (b) What is the magnetic field just above or just below the plates? (c) What are the magnitude and direction of the magnetic force per unit area on the upper plate? (d) At what extrapolated speed v will the magnetic force on a plate balance the electric force on the plate? Suggestion: Use Amperes law and choose a path that closes between the plates of the capacitor.arrow_forward(a) Is it possible for the magnetic force on a charge moving in a magnetic field to be zero? (b) Is it possible for the electric force on a charge moving in an electric field to be zero? (c) Is it possible for the resultant of the electric and magnetic forces on a charge moving simultaneously through both fields to be zero?arrow_forwardCan you use a mass spectrometer to measure the mass of a proton? Can you use a mass spectrometer to measure the mass of a neutron?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning