Orbital Drift The
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Campbell Biology in Focus (2nd Edition)
Cosmic Perspective Fundamentals
Human Anatomy & Physiology (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Create Your Own Problem Consider electromagnetic fields produced by high voltage power lines. Construct a problem in which you calculate the intensity of this electromagnetic radiation in W/m2 based on the measured magnetic field strength of the radiation in a home near the power lines. Assume these magnetic field strengths are known to average less than a T. The intensity is small enough that it is difficult to imagine mechanisms for biological damage due to it. Discuss how much energy may be radiating from a section of power line several hundred meters long and compare this to the power likely to he carried by the lines. An idea of how much power this is can be obtained by calculating the approximate current responsible for T fields at distances of tens of meters.arrow_forwardUnreasonable results To construct a non-mechanical water meter, a 0.500-T magnetic field is placed across the supply water pipe to a home and the Hall voltage is recorded, (a) Find the flow rate through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV. (b) What would the Hail voltage be for the same flow rate through a 10,0-cm- diameter pipe with tire same field applied?arrow_forwardA conducting sheet lies in a plane perpendicular to a magnetic field B that is below the sheet. If B oscillates at a high frequency and the conductor is made of a material of low resistivity, the region above the sheet is effectively shielded from B . Explain why. Will the conductor shield this region from static magnetic fields?arrow_forward
- Radio waves normally have their E and B fields in specific directions, whereas visible light usually has its E and B fields in random and rapidly changing directions that are perpendicular to each other and to the propagation direction. Can you explain why?arrow_forwardThe intensity of sunlight at the Earths distance from the Sun is 1 370 W/m2. Assume the Earth absorbs all the sunlight incident upon it. (a) Find the total force the Sun exerts on the Earth due to radiation pressure. (b) Explain how this force compares with the Suns gravitational attraction.arrow_forward(a) An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.00 T field with his fingers pointing in the direction of the field. Find the average emf induced in his wedding ling, given its diameter is 2.20 cm and assuming it takes 0.250 s to move it into the field. (b) Discuss whether this current would significantly change the temperature of the ring.arrow_forward
- A certain 50.0-Hz AC power line radiates an electromagnetic wave having a maximum electric field strength of 13.0 kV/m. (a) What is the wavelength of this very low frequency electromagnetic wave? (b) What is its maximum magnetic field strength?arrow_forwardIntegrated Concepts Electromagnetic radiation from a 5.00-mw laser is concentrated on a 1.00m2 area. (a) What is the intensity in W/m2? (b) Suppose a 2.00nC static charge is in the beam. What is me maximum electric force it experience? (c) If the static charge moves at 400 m/s, what maximum magnetic force can it feel?arrow_forwardA nonmechanical water meter could utilize the Hall effect by applying a magnetic field across a metal pipe and measuring the Hall voltage produced. What is the average fluid velocity in a 3.00-cm-diameter pipe, if a 0.500-T field across it creates a 60.0-mV Hall voltage?arrow_forward
- A nonconducting hard rubber circular disk of radius R is painted with a uniform surface charge density tr. It is rotated about its axis with angular speed . (a) Find the magnetic field produced at a point on the axis a distance h meters from the center of the disk, (b) Find the numerical value of magnitude of the magnetic field when =1C/m2 , R = 20 cm, h = 2 cm, and magnetic field of Earth, which is about 1/2 Gauss. =400rad/sec , and compare it with the magnitude ofarrow_forwardReview. A fundamental property of a type 1 superconducting material is perfect diamagnetism, or demonstration of the Meissner effect, illustrated in Figure 29.27 in Section 29.6 and described as follows. If a sample of superconducting material is placed into an externally produced magnetic field or is cooled to become superconducting while it is in a magnetic field, electric currents appear on the surface of the sample. The currents have precisely the strength and orientation required to make the total magnetic field be zero throughout the interior of the sample. This problem will help you understand the magnetic force that can then act on the sample. Compare this problem with Problem 39 in Chapter 25, pertaining to the force attracting a perfect dielectric into a strong electric field. A vertical solenoid with a length of 120 cm and a diameter of 2.50 cm consists of 1 400 turns of copper wire carrying a counterclockwise current (when viewed from above) of 2.00 A as shown in Figure P31.48a. (a) Find the magnetic field in the vacuum inside the solenoid. (b) Find the energy density of the magnetic field. Now a superconducting bar 2.20 cm in diameter is inserted partway into the solenoid. Its upper end is far outside the solenoid, where the magnetic field is negligible. The lower end of the bar is deep inside the solenoid. (c) Explain how you identify the direction required for the current on the curved surface of the bar so that the total magnetic field is zero within the bar. The field created by the supercurrents is sketched in Figure P31.48b, and the total field is sketched in Figure P31.48c. (d) The field of the solenoid exerts a force on the current in the superconductor. Explain how you determine the direction of the force on the bar. (e) Noting that the units J/m3 of energy density are the as the units N/m2 of pressure, calculate the magnitude of the force by multiplying the energy density of the solenoid field times the area of the bottom end of the superconducting bar. Figure P31.48arrow_forwardThe maximum magnetic field strength of an electromagnetic field is 5106T. Calculate the maximum electric field strength if the wave is traveling in a medium in which the speed of the wave is 0.75c.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning