EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 41PCE
Find the difference in wavelength (λ1 – λ2) for each of the following pairs of radio waves (a) f1 = 50 kHz and f2 = 52 kHz, (b) f1 = 500 kHz and f2 = 502 kHz.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Suppose a star is 8.59 x 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach
Earth?
years
(b) The Sun is 1.50 x 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth?
minutes
(c) The Moon is 3.84 x 108 m from Earth. How long (in s) does it take for a high-intensity laser beam to travel from Earth to the Moon and back?
Consider electromagnetic waves propagating in air. (a) Determine the frequency of a wave with a wavelength of (i) 5.0 km, (ii) 5.0 µm, (iii) 5.0 nm. (b) What is the wavelength (in meters and nanometers) of (i) gamma rays of frequency 6.50 x 1021 Hz and (ii) an AM station radio wave of frequency 590 kHz?
(a)
Suppose a star is 7.61 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth?
years
(b)
The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth?
minutes
(c)
The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back?
s
Chapter 25 Solutions
EBK PHYSICS
Ch. 25.1 - Enhance Your Understanding (Answers given at the...Ch. 25.2 - A distant galaxy is moving away from the Earth....Ch. 25.3 - If the frequency of an electromagnetic wave is...Ch. 25.4 - Prob. 4EYUCh. 25.5 - In the system shown in Figure 25-36, a vertically...Ch. 25 - Explain why the invisible man would be unable to...Ch. 25 - While wearing your Polaroid sunglasses at the...Ch. 25 - You want to check the tine while wearing your...Ch. 25 - BIO Polarization and the Ground Spider The ground...Ch. 25 - You are given a sheet of Polaroid material....
Ch. 25 - Can sound waves be polarized? Explain.Ch. 25 - At a garage sale you find a pair of Polaroid...Ch. 25 - If the electric field in an electromagnetic wave...Ch. 25 - Prob. 2PCECh. 25 - Prob. 3PCECh. 25 - Prob. 4PCECh. 25 - Give the direction (N, S, E, W, up, or down) of...Ch. 25 - Prob. 6PCECh. 25 - Prob. 7PCECh. 25 - The light year (ly) is a unit of distance commonly...Ch. 25 - Alpha Centauri, the closest star to the Sun, is...Ch. 25 - Prob. 10PCECh. 25 - A fighter jet is traveling at 515 m/s directly...Ch. 25 - A distant star is traveling directly away from...Ch. 25 - Prob. 13PCECh. 25 - Prob. 14PCECh. 25 - Prob. 15PCECh. 25 - Prob. 16PCECh. 25 - Communicating with the Voyager Spacecraft The...Ch. 25 - A father and his daughter are interested in the...Ch. 25 - Prob. 19PCECh. 25 - Prob. 20PCECh. 25 - Prob. 21PCECh. 25 - Baseball scouts often use a radar gun to measure...Ch. 25 - A state highway patrol car radar unit uses a...Ch. 25 - Prob. 24PCECh. 25 - Prob. 25PCECh. 25 - BIO Dental X-rays The X-rays produced in the...Ch. 25 - Find the frequency of green light with a...Ch. 25 - Prob. 28PCECh. 25 - How many led wavelengths ( = 705 nm) tall are you?Ch. 25 - A cell phone transmits at a frequency of 1.94 ...Ch. 25 - Microwave Oven If a microwave oven produces...Ch. 25 - BIO Human Radiation Under normal conditions,...Ch. 25 - BIO UV Radiation Ultraviolet light is typically...Ch. 25 - Prob. 34PCECh. 25 - Predict/Calculate When an electromagnetic wave...Ch. 25 - Predict/ Calculate (a) Which color of light has...Ch. 25 - Prob. 37PCECh. 25 - A television is tuned to a station broadcasting at...Ch. 25 - An AM radio stations antenna is constructed to be...Ch. 25 - Prob. 40PCECh. 25 - Find the difference in wavelength (1 2) for each...Ch. 25 - Synchrotron Frequency In one portion of a...Ch. 25 - Prob. 43PCECh. 25 - Prob. 44PCECh. 25 - Prob. 45PCECh. 25 - What is the rms value of the electric field in a...Ch. 25 - The magnetic field in an electromagnetic wave has...Ch. 25 - What is the maximum value of the electric field in...Ch. 25 - What is the maximum value of the electric field in...Ch. 25 - Predict/Calculate Electromagnetic wave 1 has a...Ch. 25 - A 75-kW radio station broadcasts its signal...Ch. 25 - At what distance will a 45-W lightbulb have the...Ch. 25 - What is the ratio of the sunlight intensity...Ch. 25 - Predict/Calculate In the following, assume that...Ch. 25 - Prob. 55PCECh. 25 - Prob. 56PCECh. 25 - Sunlight Intensity After filtering through the...Ch. 25 - Predict/Calculate (a) Find the electric and...Ch. 25 - Prob. 59PCECh. 25 - BIO You are standing 2.5 m from a 150-W lightbulb....Ch. 25 - Prob. 61PCECh. 25 - Find the rms electric and magnetic fields al a...Ch. 25 - Prob. 63PCECh. 25 - Prob. 64PCECh. 25 - Prob. 65PCECh. 25 - BIO Laser Surgery Each pulse produced by an...Ch. 25 - Prob. 67PCECh. 25 - Predict Explain Consider the two polarization...Ch. 25 - Predict/Explain Consider the two polarization...Ch. 25 - An incident beam of light with an intensityl0....Ch. 25 - Vertically polarized light with an intensity of...Ch. 25 - A person riding in a boat observes that the...Ch. 25 - Unpolarized light passes through two polarizers...Ch. 25 - In Problem 73, what should be the angle between...Ch. 25 - Unpolarized light is incident with intensity /0 on...Ch. 25 - Predict/Calculate A beam of vertically polarized...Ch. 25 - Predict/Calculate Repeat Problem 76, this time...Ch. 25 - BIO Predict/Calculate Optical Activity Optically...Ch. 25 - A helium-noon laser omits a beam of unpolarizod...Ch. 25 - Referring to Figure 25-46, suppose that filter 3...Ch. 25 - Prob. 81GPCh. 25 - CE If sailors of the future use radiation pressure...Ch. 25 - Prob. 83GPCh. 25 - BIO Radiofrequency Ablation In radiofrequency (RF)...Ch. 25 - Predict/Calculate At a particular instant of time,...Ch. 25 - Predict/Calculate A light beam traveling in the...Ch. 25 - Figure 25-47 shows four polarization experiments...Ch. 25 - Lightning and Thunder During a thunderstorm a bolt...Ch. 25 - Prob. 89GPCh. 25 - Prob. 90GPCh. 25 - Predict/Calculate Suppose the distance to the...Ch. 25 - BIO Predict/Calculate Consider the physical...Ch. 25 - BIO Polaroid Vision in a Spider Experiments show...Ch. 25 - A state highway patrol car radar unit uses a...Ch. 25 - What is the ratio of the sunlight intensity...Ch. 25 - What area is needed for a solar collector to...Ch. 25 - Prob. 97GPCh. 25 - Three polarizers are arranged as shown in Figure...Ch. 25 - Prob. 99GPCh. 25 - Orbital Drift The radiation pressure exerted by...Ch. 25 - A lightbulb emits light uniformly in all...Ch. 25 - Radio Reception A 125-kW radio station broadcasts...Ch. 25 - Light Rocket Stranded 12 m from your spacecraft,...Ch. 25 - A typical home may require a total of 2.00 103...Ch. 25 - Prob. 105GPCh. 25 - Predict/Calculate A typical laser used in...Ch. 25 - Four polarizers are set up so that the...Ch. 25 - BIO Optical Activity of Sugar The sugar...Ch. 25 - Visible-Light Curing in Dentistry An essential...Ch. 25 - Visible-Light Curing in Dentistry An essential...Ch. 25 - Visible-Light Curing in Dentistry An essential...Ch. 25 - Visible-Light Curing in Dentistry An essential...Ch. 25 - Predict/Calculate Referring to Example 25-12...Ch. 25 - Referring to Example 25-12 Suppose the incident...
Additional Science Textbook Solutions
Find more solutions based on key concepts
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Determine the molecular geometry of each polyatomic ion. a. CO32 b. CIO2 c. NO3 d. NH4+
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An AM station broadcasts rock music at “950 on your radio dial.” Units for AM frequencies are given in kilohertz (kHz). Find the wavelength of the station’s radio waves in meters (m), nanometers (nm), and angstroms (Å).arrow_forwardLight with a wavelength of 571 nm is in the visible part of the electromagnetic spectrum. What is the numerical value of the exponent p if 571 nm = 571 x 10² cm? p= Report your numerical answer below, assuming three significant figures.arrow_forward(a) Suppose a star is 6.42 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth (b) The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? (c) The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back?arrow_forward
- A meteorologist is using radar to measure the distance to a storm. reception of the radar pulse is 0.23 ms. How far away is the storm? (in km) The time difference between transmission and OA: 3.71 | OB: 5.38 OC: 7.80 OD: 11.31 OE: 16.40 OF: 23.78 OG: 34.48 OH: 49.99arrow_forwardInfrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 3.30 THz. Calculate the wavelength of the infrared radiation. Be sure your answer has the correct number of significant digits.arrow_forwardWhat are the wavelengths of (a) X-rays of frequency 2.0 × 1017 Hz? (b) Yellow light of frequency 5.1 × 1014 Hz? (c) Gamma rays of frequency 1.0 × 1023 Hz?arrow_forward
- Problem 4: Consider the 100-MHz radio waves used in an MRI device. Part (a) What is the wavelength, in meters, of these radio waves? λ = 3 Part (b) If the frequencies are swept over a ±12.5 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted? λmin = Part (c) What is the maximum, in meters, of this wavelength range? λmax =arrow_forwardThe electric field of an EM wave in vacuum is given by En = 30 cos (27 × 10°t + 3); Ey = 0; Ez = 0; where E is in volts/meter, t in seconds, and x in meters. Determine the frequency f, the wavelength A, the direction of propagation of the wave, the direction and amplitude of the magnetic field.arrow_forwardIf a light wave has an electric field strength of 437.3 V/m, what is the magnetic field strength in a vacuum? Express your answer in micro Tesla ( uT =*10^ ^ -6) and to 3 decimal placesarrow_forward
- VHF, or very high frequency, refers to radio frequency electromagnetic waves in the range 30 to 300 MHz. In the U.S., television stations broadcast channels 2 through 13 in the VHF range between 54.0 MHz and 216 MHz, with ranges 72.0 to 76.0 MHz and 88.0 to 174 MHz not utilized for TV broadcasting. Each channel has a frequency width of 6.00 MHz. The table below gives the lower and upper frequency of each channel. Channel Lower edge (MHz) Upper edge (MHz) 2 3 4 5 6 7 8 9 10 11 12 13 54 60 66 76 82 174 180 186 192 198 204 210 m m m m 60 66 m 72 m 82 88 180 186 (a) Calculate the broadcast wavelength range for channel 2. (Enter your answers from smallest to largest, in m.) smallest value largest value 192 198 204 (b) Calculate the broadcast wavelength range for channel 3. (Enter your answers from smallest to largest, in m.) smallest value largest value 210 216 (c) Calculate the broadcast wavelength range for channel 5. (Enter your answers from smallest to largest, in m.) smallest value…arrow_forwardA person is standing between two radio towers that are emitting the same signal. The person is 150m from one tower and 175m from the second tower. What is the path length difference between the signals from each tower?arrow_forwardRadio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength. What is the wavelength of 27 MHz radio waves?A. 11 m B. 9.0 m C. 0.011 m D. 0.009 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY