Figure 2.73 Industrial pipe installations often feature pipes running in different directions. How can we find the distance between two skew pipes? Finding the distance from a point to a line or from a line to a plane seems like a pretty abstract procedure. But, if the lines represent pipes in a chemical plant or tubes in an oil refinery or roads at an intersection of highways, confirming that the distance between them meets specifications can be both important and awkward to measure. One way is to model the two pipes as lines, using the techniques in this Chapter, and then calculate the distance between them. The calculation involves forming vectors along the directions of the lines and using both the cross product and the dot product. The symmetric forms of two lines, L 1 and L 2 , are L 1 : x − x 1 a 1 = y − y 1 b 1 = z − z 1 c 1 L 2 : x − x 2 a 2 = y − y 2 b 2 = z − z 2 c 2 You are to develop a formula for the distance d between these two lines, in terms of the values a 1 , b 1 , c 1 ; b 2 , c 2 ; x 1 , y 1 , z 1 ; and x 2 , y 2 , z 2 . The distance between two lines is usually taken to mean the minimum distance, so this is the length of a line segment or the length of a vector that is perpendicular to both lines and intersects both lines. 4. Use symmetric equations to find a convenient vector v 1 2 that lies between any two points, one on each line. Again, this can be done directly from the symmetric equations.
Figure 2.73 Industrial pipe installations often feature pipes running in different directions. How can we find the distance between two skew pipes? Finding the distance from a point to a line or from a line to a plane seems like a pretty abstract procedure. But, if the lines represent pipes in a chemical plant or tubes in an oil refinery or roads at an intersection of highways, confirming that the distance between them meets specifications can be both important and awkward to measure. One way is to model the two pipes as lines, using the techniques in this Chapter, and then calculate the distance between them. The calculation involves forming vectors along the directions of the lines and using both the cross product and the dot product. The symmetric forms of two lines, L 1 and L 2 , are L 1 : x − x 1 a 1 = y − y 1 b 1 = z − z 1 c 1 L 2 : x − x 2 a 2 = y − y 2 b 2 = z − z 2 c 2 You are to develop a formula for the distance d between these two lines, in terms of the values a 1 , b 1 , c 1 ; b 2 , c 2 ; x 1 , y 1 , z 1 ; and x 2 , y 2 , z 2 . The distance between two lines is usually taken to mean the minimum distance, so this is the length of a line segment or the length of a vector that is perpendicular to both lines and intersects both lines. 4. Use symmetric equations to find a convenient vector v 1 2 that lies between any two points, one on each line. Again, this can be done directly from the symmetric equations.
Figure 2.73 Industrial pipe installations often feature pipes running in different directions. How can we find the distance between two skew pipes?
Finding the distance from a point to a line or from a line to a plane seems like a pretty abstract procedure. But, if the lines represent pipes in a chemical plant or tubes in an oil refinery or roads at an intersection of highways, confirming that the distance between them meets specifications can be both important and awkward to measure. One way is to model the two pipes as lines, using the techniques in this Chapter, and then calculate the distance between them. The calculation involves forming vectors along the directions of the lines and using both the cross product and the dot
product.
The symmetric forms of two lines,
L
1
and
L
2
,
are
L
1
:
x
−
x
1
a
1
=
y
−
y
1
b
1
=
z
−
z
1
c
1
L
2
:
x
−
x
2
a
2
=
y
−
y
2
b
2
=
z
−
z
2
c
2
You are to develop a formula for the distance
d
between these two lines, in terms of the values
a
1
,
b
1
,
c
1
;
b
2
,
c
2
;
x
1
,
y
1
,
z
1
;
and
x
2
,
y
2
,
z
2
.
The distance between two lines is usually taken to mean the
minimum distance, so this is the length of a line segment or the length of a vector that is perpendicular to both lines and intersects both lines.
4. Use symmetric equations to find a convenient vector
v
1
2
that lies between any two points, one on each line. Again, this can be done directly from the symmetric equations.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
A company found that the daily sales revenue of its flagship product follows a normal distribution with a mean of $4500 and a standard deviation of $450. The company defines a "high-sales day" that is, any day with sales exceeding $4800. please provide a step by step on how to get the answers
Q: What percentage of days can the company expect to have "high-sales days" or sales greater than $4800?
Q: What is the sales revenue threshold for the bottom 10% of days? (please note that 10% refers to the probability/area under bell curve towards the lower tail of bell curve)
Provide answers in the yellow cells
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.