
Concept explainers
(a)
The angle of refraction for the sound wave.
(a)

Answer to Problem 4P
The angle of refraction for sound wave is
Explanation of Solution
Given info: The wavelength of sound wave is
The speed of sound in air at
The expression for the Snell’s law is,
Here,
Rearrange the above formula to find
The formula to calculate speed of sound in water is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the angle of refraction for the sound wave is
(b)
The wavelength of sound in water.
(b)

Answer to Problem 4P
The wavelength of sound in water is
Explanation of Solution
Given info: The wavelength of sound wave is
The formula to calculate the wavelength is,
Here,
Rearrange the above formula to find
Substitute
Conclusion:
Therefore, the wavelength of sound in water is
(c)
The angle of refraction.
(c)

Answer to Problem 4P
The angle of refraction is
Explanation of Solution
Given info: The wavelength of sodium yellow light is
The formula to calculate the Snell’s law is,
Here,
Rearrange the above formula to find
Substitute
Conclusion:
Therefore, the angle of refraction is
(d)
The
(d)

Answer to Problem 4P
The wavelength of light in water is
Explanation of Solution
Given info: The wavelength of sodium yellow light is
The formula to calculate the wavelength is,
Here,
Rearrange the above formula to find
Substitute
Conclusion:
Therefore, the wavelength of light in water is
(e)
The behavior of sound and light waves.
(e)

Answer to Problem 4P
The behavior of sound and light waves is that the sound waves speeds up when travelling from rarer medium to denser medium and light rays slows down.
Explanation of Solution
Given info: The wavelength of sodium yellow light is
The medium that has low refractive index with respect to another medium is called rarer medium and the medium that has high refractive index with respect to another medium is called denser medium.
From part (b) the wavelength of sound wave in water is larger than the wavelength of sound in air and from part (d) the wavelength of light in water is less than the wavelength of light in air.
The sound waves travelling from rarer to denser medium then the refracted sound waves bend away from the normal that the reason there is an increase in wavelength of sound waves.
The ray of light travelling from rarer to denser medium then the refracted rays bends towards the normal. So that’s the reason there is a decrease in the wavelength of light in water.
Conclusion:
Therefore, The behavior of sound and light waves is that the sound waves speeds up when travelling from rarer medium to denser medium and light rays slows down.
Want to see more full solutions like this?
Chapter 25 Solutions
Principles of Physics: A Calculus-Based Text
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





