
Welding: Principles and Applications (MindTap Course List)
8th Edition
ISBN: 9781305494695
Author: Larry Jeffus
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 33R
Which nondestructive test is most commonly used?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Using hand drawing both of them
6.
Draw the isometric drawing for this problem(15%)
Please draw the section view of the following problems
Chapter 25 Solutions
Welding: Principles and Applications (MindTap Course List)
Ch. 25 - Why are all welds not inspected to the same level...Ch. 25 - Why is the strength of all production parts not...Ch. 25 - Why is it possible to do more than one...Ch. 25 - What is a discontinuity?Ch. 25 - What is a defect?Ch. 25 - What is tolerance?Ch. 25 - What are the 12 most common discontinuities?Ch. 25 - How can porosity form in a weld and not be seen by...Ch. 25 - What welding process can cause porosity to form?Ch. 25 - How is piping porosity formed?
Ch. 25 - What are inclusions, and how are they caused?Ch. 25 - When does inadequate joint penetration usually...Ch. 25 - How can a notch cause incomplete fusion?Ch. 25 - How can an arc strike appear on a guided-bend...Ch. 25 - What is overlap?Ch. 25 - What is undercut?Ch. 25 - What causes crater cracks?Ch. 25 - What is underfill?Ch. 25 - What is the difference between a lamination and a...Ch. 25 - How can stress be reduced through a plate's...Ch. 25 - What would be the tensile strength in pounds per...Ch. 25 - What would be the elongation for a specimen for...Ch. 25 - How are the results of a stress test reported?Ch. 25 - What would be the transverse shear strength per...Ch. 25 - What would be the longitudinal shearing strength...Ch. 25 - What are the three methods of destructive testing...Ch. 25 - How are the specimens bent for a guided-. root-,...Ch. 25 - How wide should a specimen be if the material...Ch. 25 - Why are guidelines drawn on the surface of a...Ch. 25 - What part of a fillet weld break test is examined?Ch. 25 - What can happen if acids are handled carelessly?Ch. 25 - What information about the weld does an impact...Ch. 25 - Which nondestructive test is most commonly used?Ch. 25 - List the five steps to be followed when using a...Ch. 25 - What properties must metal have before it can be...Ch. 25 - Why will some flaws appear larger on an X-ray than...Ch. 25 - How is the size of a flaw determined using...Ch. 25 - What is the major limitation of eddy current...Ch. 25 - What information does a hardness test reveal?Ch. 25 - Why is it important to select the correct welding...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 7) Please draw the front, top and side view for the following object. Please cross this line outarrow_forwardA 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forwardCalculate the speed of the driven member with the following conditions: Diameter of the motor pulley: 4 in Diameter of the driven pulley: 12 in Speed of the motor pulley: 1800 rpmarrow_forward
- 4. In the figure, shaft A made of AISI 1010 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite Forces F via shaft B. Stress concentration factors K₁ (1.7) and Kts (1.6) are induced by the 3mm fillet. Notch sensitivities are q₁=0.9 and qts=1. The length of shaft A from the fixed support to the connection at shaft B is 1m. The load F cycles from 0.5 to 2kN and a static load P is 100N. For shaft A, find the factor of safety (for infinite life) using the modified Goodman fatigue failure criterion. 3 mm fillet Shaft A 20 mm 25 mm Shaft B 25 mmarrow_forwardPlease sovle this for me and please don't use aiarrow_forwardPlease sovle this for me and please don't use aiarrow_forward
- 3. The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life (using Goodman line) and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 25 mm + 6-mm D. 10 mmarrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 1. The truss shown is supported by hinge at A and cable at E.Given: H = 4m, S = 1.5 m, α = 75⁰, θ = 33⁰.Allowable tensile stress in cable = 64 MPa.Allowable compressive stress in all members = 120 MPaAllowable tensile stress in all members = 180 MPa1.Calculate the maximum permissible P, in kN, if the diameter of the cable is 20 mm.2.If P = 40 kN, calculate the required area (mm2) of member BC.3. If members have solid square section, with dimension 15 mm, calculate the maximum permissible P (kN) based on the allowable strength of member HI.ANSWERS: (1) 45.6 kN; (2) 83.71 mm2; (3) 171.76 kNarrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 2: A wire 4 meters long is stretched horizontally between points 4 meters apart. The wire is 25 mm2 in cross-section with a modulus of elasticity of 200 GPa. A load W placed at the center of the wire produces a sag Δ.1.Calculate the tension (N) in the wire if sag Δ = 30 mm.2.Calculate the magnitude of W, in N, if sag Δ = 54.3 mm.3. If W is 60 N, what is the sag (in mm)?ANSWERS: (1) 562 N, (2) 100 N, (3) 45.8 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Quality Control and Quality Assurance; Author: AISC Education;https://www.youtube.com/watch?v=C2PFj9YZ_mw;License: Standard Youtube License