Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 25, Problem 1CQ

a. Charge q1is distance r from a positive point charge Q. Charge q2= q1/3 is distance 2r from Q. What is the ratio U1/U2 of their potential energies due to their interactions with Q? b. Charge q1is distance s from the negative plate of a parallel-plate capacitor. Charge q2= q1/3 is distance 2s from the negative plate. What is the ratio U1/U2 of their potential energies?

Expert Solution & Answer
Check Mark
To determine

a. Ratio of potential energy (U1/U2)

b. Ratio of potential energy (U1/U2)

Answer to Problem 1CQ

Solution:

a. Ratio of the potential energy is 6/1

b. Ratio of the potential energy is 6/1

Explanation of Solution

Given:

(a)

Charge q1 is at distance r from the positive point charge Q

Charge q2=q1/3 is at distance 2r from the positive point charge Q

(b)

Charge q1 is at distance s from the negative plate charge Q

Charge q2=q1/3 is at distance 2s from the negative plate charge Q

Formula used:

The potential energy of the charge particle is given by the formula

U=14πεo×q1Qr

Here,

U is the potential energy

εo is electric permissibility

q1&Q are charges

r is the distance between charge particles

Calculation:

(a)

Consider the diagram of the charge particles

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition), Chapter 25, Problem 1CQ , additional homework tip  1

Figure.1

The potential energy of the charge particle q1 is given as

U1=14πεo×q1Qr …… (1)

The potential energy of the charge particle q2 is given as

U2=14πεo×q2Qr

Plugging the values in the above equation

U2=14πεo×q1Q3(2r) …… (2)

Calculate the ratio of the potential energy by dividing Eq. (1) by Eq. (2)

U1U2=14πεo×q1Qr14πεo×q1Q3(2r)U1U2=61

Hence the ration of their potential energy is 6:1.

(b)

Consider the diagram of the charge particles

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition), Chapter 25, Problem 1CQ , additional homework tip  2

Figure.1

The potential energy of the charge particle q1 is given as

U1=14πεo×q1Qr

Plugging the values in the above equation

U1=14πεo×q1(Q)s …… (3)

The potential energy of the charge particle q2 is given as

U2=14πεo×q2Qr

Plugging the values in the above equation

U2=14πεo×q1(Q)3(2s) …… (4)

Calculate the ratio of the potential energy by dividing Eq. (3) by Eq. (4)

U1U2=14πεo×q1(Q)s14πεo×q1(Q)3(2s)U1U2=61

Hence the ration of their potential energy is 6:1.

Conclusion:

a. Ratio of the potential energy is 6/1

b. Ratio of the potential energy is 6/1

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
02:09
Students have asked these similar questions
How would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?
14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.
No chatgpt pls will upvote

Chapter 25 Solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)

Ch. 25 - ll. FIGURE Q25.11 shows three points near two...Ch. 25 - Reproduce FIGURE Q25.12 on your paper. Then draw a...Ch. 25 - I. The electric field strength is 20,000 N/C...Ch. 25 - The electric field strength is 50,000 N/C inside a...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - Prob. 5EAPCh. 25 - What is the electric potential energy of the group...Ch. 25 - What is the electric potential energy of the group...Ch. 25 - Two positive point charges are 5.0 cm apart. If...Ch. 25 - A water molecule perpendicular to an electric...Ch. 25 - FIGURE EX25.10 shows the potential energy of an...Ch. 25 - What is the speed of a proton that has been...Ch. 25 - I What is the speed of an electron that has been...Ch. 25 - What potential difference is needed to accelerate...Ch. 25 - Prob. 14EAPCh. 25 - A proton with an initial speed of 800,000 m/s is...Ch. 25 - Prob. 16EAPCh. 25 - Prob. 17EAPCh. 25 - In proton-beam therapy, a higher-energy beam of...Ch. 25 - Prob. 19EAPCh. 25 - Prob. 20EAPCh. 25 - Prob. 21EAPCh. 25 - Prob. 22EAPCh. 25 - Prob. 23EAPCh. 25 - Prob. 24EAPCh. 25 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 25 - In FIGURE EX25.26, a proton is fired with a speed...Ch. 25 - Prob. 27EAPCh. 25 - Prob. 28EAPCh. 25 - Prob. 29EAPCh. 25 - Prob. 30EAPCh. 25 - Prob. 31EAPCh. 25 - Prob. 32EAPCh. 25 - Prob. 33EAPCh. 25 - Prob. 34EAPCh. 25 - Prob. 35EAPCh. 25 - A 5.0-cm-diamtere metal ball has a surface charge...Ch. 25 - Prob. 37EAPCh. 25 - Prob. 38EAPCh. 25 - Prob. 39EAPCh. 25 - Prob. 40EAPCh. 25 - Prob. 41EAPCh. 25 - The four 1.0 g sphere shown in FIGURE P25.42 are...Ch. 25 - A proton’s speed as it passes point A is 50,000...Ch. 25 - Prob. 44EAPCh. 25 - Prob. 45EAPCh. 25 - Prob. 46EAPCh. 25 - Prob. 47EAPCh. 25 - Prob. 48EAPCh. 25 - Prob. 49EAPCh. 25 - Prob. 50EAPCh. 25 - What is the escape speed of an electron launched...Ch. 25 - Prob. 52EAPCh. 25 - Prob. 53EAPCh. 25 - Il A 2.0-mm-diameter glass bead is positively...Ch. 25 - Prob. 55EAPCh. 25 - Il A proton is fired from far away toward the...Ch. 25 - Prob. 57EAPCh. 25 - Prob. 58EAPCh. 25 - Il One form of nuclear radiation, beta decay,...Ch. 25 - Il Two 10-cm-diameterelectrodes 0.50 cm a part...Ch. 25 - Il Two 10-cm-diameter electrodes 0.50 cm apart...Ch. 25 - Il Electrodes of area A are spaced distance d...Ch. 25 - Prob. 63EAPCh. 25 - Il Two spherical drops of mercury each have a...Ch. 25 - Prob. 65EAPCh. 25 - Il FIGURE P25.66 shows two uniformly charged...Ch. 25 - Prob. 67EAPCh. 25 - Il The arrangement of charges shown in FIGURE...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - I FIGURE P25.71 shows a thin rod with charge Q...Ch. 25 - Prob. 72EAPCh. 25 - Prob. 73EAPCh. 25 - Prob. 74EAPCh. 25 - Prob. 75EAPCh. 25 - Prob. 76EAPCh. 25 - Prob. 77EAPCh. 25 - Il A proton and an alpha particle (q = +2e, m = 4...Ch. 25 - Ill Bead A has a mass of 15 g and a charge of —5.0...Ch. 25 - Il Two 2.0-mm-diameter beads, C and D, are 10 mm...Ch. 25 - Il A thin rod of length L and total charge Q has...Ch. 25 - Il A hollow cylindrical shell of length L and...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY