Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 9CQ
FIGURE Q25.9 shows two points inside a capacitor. Let V = 0 V at
the negative plate.
a. What is the ratio V2/Vl of the electric potentials? Explain.
b. What is the ratio E2/E1 of the electric field strengths?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A parallel plate capacitor in a vacuum is made up of two square plates withsides of length L = 4 cm separated by a distance d = 1 cm. It is attached to a battery. Anelectron released from the negative plate reaches a speed v= 1.33 x 10^6 m/s halfwaybetween the two plates.
a. What is the electric potential of this capacitor?
b. How much charge is on each plate?
H.W.
to
1. Suppose in some region of space the electric potential is given by
V(x.y.z) =V-E=+
Eya'z
Jabby
Where a is a constant with dimensions of length. Find the x, y, and the z-components of
っしeと
the associated electric field.
2. Suppose that the electric potential in some region of space is given by
V(x.y.z)=V, exp(-k|:)cos kx
Find the electric field everywhere.
Two 3.00 cm × 3.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC .
Part A. What is the electric field strength inside the capacitor if the spacing between the plates is 1.10 mm ?Express your answer with the appropriate units.
Part B. What is potential difference across the capacitor if the spacing between the plates is 1.10 mm ?Express your answer with the appropriate units.
Part C. What is the electric field strength inside the capacitor if the spacing between the plates is 2.20 mm ?Express your answer with the appropriate units.
Part D. What is the potential difference across the capacitor if the spacing between the plates is 2.20 mm ?Express your answer with the appropriate units.
Chapter 25 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 25 - a. Charge q1is distance r from a positive point...Ch. 25 - FIGURE Q25.2 shows the potential energy of a...Ch. 25 - An electron moves along the trajectory of FIGURE...Ch. 25 - Two protons are launched with the same speed from...Ch. 25 - Rank in order, from most positive to most...Ch. 25 - FIGURE Q25.6 shows the electric potential along...Ch. 25 - A capacitor with plates separated by distance d is...Ch. 25 - Prob. 8CQCh. 25 - FIGURE Q25.9 shows two points inside a capacitor....Ch. 25 - FIGURE Q25.10 shows two points near a positive...
Ch. 25 - ll. FIGURE Q25.11 shows three points near two...Ch. 25 - Reproduce FIGURE Q25.12 on your paper. Then draw a...Ch. 25 - I. The electric field strength is 20,000 N/C...Ch. 25 - The electric field strength is 50,000 N/C inside a...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - Prob. 5EAPCh. 25 - What is the electric potential energy of the group...Ch. 25 - What is the electric potential energy of the group...Ch. 25 - Two positive point charges are 5.0 cm apart. If...Ch. 25 - A water molecule perpendicular to an electric...Ch. 25 - FIGURE EX25.10 shows the potential energy of an...Ch. 25 - What is the speed of a proton that has been...Ch. 25 - I What is the speed of an electron that has been...Ch. 25 - What potential difference is needed to accelerate...Ch. 25 - Prob. 14EAPCh. 25 - A proton with an initial speed of 800,000 m/s is...Ch. 25 - Prob. 16EAPCh. 25 - Prob. 17EAPCh. 25 - In proton-beam therapy, a higher-energy beam of...Ch. 25 - Prob. 19EAPCh. 25 - Prob. 20EAPCh. 25 - Prob. 21EAPCh. 25 - Prob. 22EAPCh. 25 - Prob. 23EAPCh. 25 - Prob. 24EAPCh. 25 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 25 - In FIGURE EX25.26, a proton is fired with a speed...Ch. 25 - Prob. 27EAPCh. 25 - Prob. 28EAPCh. 25 - Prob. 29EAPCh. 25 - Prob. 30EAPCh. 25 - Prob. 31EAPCh. 25 - Prob. 32EAPCh. 25 - Prob. 33EAPCh. 25 - Prob. 34EAPCh. 25 - Prob. 35EAPCh. 25 - A 5.0-cm-diamtere metal ball has a surface charge...Ch. 25 - Prob. 37EAPCh. 25 - Prob. 38EAPCh. 25 - Prob. 39EAPCh. 25 - Prob. 40EAPCh. 25 - Prob. 41EAPCh. 25 - The four 1.0 g sphere shown in FIGURE P25.42 are...Ch. 25 - A proton’s speed as it passes point A is 50,000...Ch. 25 - Prob. 44EAPCh. 25 - Prob. 45EAPCh. 25 - Prob. 46EAPCh. 25 - Prob. 47EAPCh. 25 - Prob. 48EAPCh. 25 - Prob. 49EAPCh. 25 - Prob. 50EAPCh. 25 - What is the escape speed of an electron launched...Ch. 25 - Prob. 52EAPCh. 25 - Prob. 53EAPCh. 25 - Il A 2.0-mm-diameter glass bead is positively...Ch. 25 - Prob. 55EAPCh. 25 - Il A proton is fired from far away toward the...Ch. 25 - Prob. 57EAPCh. 25 - Prob. 58EAPCh. 25 - Il One form of nuclear radiation, beta decay,...Ch. 25 - Il Two 10-cm-diameterelectrodes 0.50 cm a part...Ch. 25 - Il Two 10-cm-diameter electrodes 0.50 cm apart...Ch. 25 - Il Electrodes of area A are spaced distance d...Ch. 25 - Prob. 63EAPCh. 25 - Il Two spherical drops of mercury each have a...Ch. 25 - Prob. 65EAPCh. 25 - Il FIGURE P25.66 shows two uniformly charged...Ch. 25 - Prob. 67EAPCh. 25 - Il The arrangement of charges shown in FIGURE...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - I FIGURE P25.71 shows a thin rod with charge Q...Ch. 25 - Prob. 72EAPCh. 25 - Prob. 73EAPCh. 25 - Prob. 74EAPCh. 25 - Prob. 75EAPCh. 25 - Prob. 76EAPCh. 25 - Prob. 77EAPCh. 25 - Il A proton and an alpha particle (q = +2e, m = 4...Ch. 25 - Ill Bead A has a mass of 15 g and a charge of —5.0...Ch. 25 - Il Two 2.0-mm-diameter beads, C and D, are 10 mm...Ch. 25 - Il A thin rod of length L and total charge Q has...Ch. 25 - Il A hollow cylindrical shell of length L and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardA line of charge with uniform charge density lies along the x axis from x = a to x = a. a. What is the magnitude of the electric potential at (0, y)? b. How much work is necessary to move a particle with charge q from very far away to (0, y)?arrow_forwardIn three regions of space, the electric potential is given by V(r)=0forrRV(r)=V04R2r2forRr2RV(r)=V0forr2R a. Plot V as a function of r. b. Find expressions for the electric field in all three regions. c. Plot E versus r in all three regions.arrow_forward
- A research Van de Graaff generator has a 2.00-rn- diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (C) An oxygen atom with three missing electrons is released near the Van de Graatf generator. What is its energy in MeV at this distance?arrow_forwardA parallel-plate capacitor has charge of magnitude 9.00F on each plate and capacitance 3.00F when there is air between the plates. The plates are separated by 2.00 mm. With the charge on the plates kept constant, a dielectric with =5 . is inserted between the plates, completely filling the volume between the plates, (a) What is the potential difference between the plates of the capacitor, before and after the dielectric has been inserted? (b) What is the electrical field at the point midway between the plates before and after the dielectric is inserted?arrow_forward(a) Calculate the electric potential 0.250 cm from ail electron, (b) What is the electric potential difference between two points that are 0.250 cm and 0.750 cm from an electron? (c) How would the answers change if the electron were replaced with a proton?arrow_forward
- Two parallel conducting plates, each of cross-sectional area 400 cm2, are 2.0 cm apart and uncharged. If 1.01012 electrons are transferred from one plate to the other, (a) what is the potential difference between the plates? (b) What is the potential difference between the positive plate and a point 1.25 cm from it that is between the plates?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardA charged particle is moved in a uniform electric field between two points, A and B, as depicted in Figure P26.65. Does the change in the electric potential or the change in the electric potential energy of the particle depend on the sign of the charged particle? Consider the movement of the particle from A to B, and vice versa, and determine the signs of the electric potential and the electric potential energy in each possible scenario.arrow_forward
- The surface charge density on a long straight metallic pipe is . What is the electric potential outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardWhen a 360-nF air capacitor is connected to a power supply, the energy stored in the capacitor is 18.5J . While the capacitor is connected to the power supply, a slab of dielectric is insetted that completely fills die space between the plates. This increases the stored energy by 23.2J . (a) What is the potential difference between the capacitor plates? (b) What is die dielectric constant of the slab?arrow_forwardA rod of length L (Fig. P20.26) lies along the x axis with its left end at the origin. It has a nonuniform charge density = x, where is a positive constant. (a) What are the units of ? (b) Calculate the electric potential at A. Figure P20.26arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY