ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
2nd Edition
ISBN: 9781118872925
Author: Klein
Publisher: JOHN WILEY+SONS INC.CUSTOM
Question
Book Icon
Chapter 2.5, Problem 18ATS

 (a)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond

(b)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond

(c)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond

(d)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond

Blurred answer
Students have asked these similar questions
1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.
Calculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdva
Plleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AI

Chapter 2 Solutions

ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY