ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<
2nd Edition
ISBN: 9781118872925
Author: Klein
Publisher: JOHN WILEY+SONS INC.CUSTOM
Question
Book Icon
Chapter 2.5, Problem 17ATS

(a)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

(b)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

(c)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

(d)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

(e)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

(f)

Interpretation Introduction

Interpretation:

The number of lone pairs in the following structure has to be identified.

Concept Introduction:

Lone pair:

A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non-bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.

Delocalized lone pair:

The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.

Localized lone pair:

The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to π bond.

Blurred answer
Students have asked these similar questions
3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). CN + En CN
3) Propagation of uncertainty. Every measurement has uncertainty. In this problem, we'll evaluate the uncertainty in every step of a titration of potassium hydrogen phthalate (a common acid used in titrations, abbreviated KHP, formula CsH5KO4) with NaOH of an unknown concentration. The calculation that ultimately needs to be carried out is: concentration NaOH 1000 x mass KHP × purity KHP molar mass KHP x volume NaOH Measurements: a) You use a balance to weigh 0.3992 g of KHP. The uncertainty is ±0.15 mg (0.00015 g). b) You use a buret to slowly add NaOH to the KHP until it reaches the endpoint. It takes 18.73 mL of NaOH. The uncertainty of the burst is 0.03 mL.. c) The manufacturer states the purity of KHP is 100%±0.05%. d) Even though we don't think much about them, molar masses have uncertainty as well. The uncertainty comes from the distribution of isotopes, rather than random measurement error. The uncertainty in the elements composing KHP are: a. Carbon: b. Hydrogen: ±0.0008…
Don't used hand raiting and don't used Ai solution

Chapter 2 Solutions

ORG.CHEM EBOOK W/BBWILEY PLUS>CUSTOM<

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY