
(a)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(b)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(c)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(d)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(e)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(f)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(g)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to
(h)
Interpretation: The number of lone pairs in the following structure has to be identified.
Concept Introduction:
Lone pair:
A lone pair is given by a pair of outer most electrons that are not shared with another atom, otherwise called as non bonding pair. These are generally found in the valence shell of atom and are identified by Lewis structure. Pairs of electrons are considered as lone pairs when two electrons are paired and are not participated in chemical bonding. The sum of number of lone pairs and number of bonding electrons equals the total number of outermost electrons around an atom.
Delocalized lone pair:
The lone pair that participates in resonance is called as delocalized lone pair. The presence of lone pair affects the geometry of the atom.
Localized lone pair:
The lone pair that doesn’t participate in the resonance is called localized lone pair. The lone pair is not allylic to

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Organic Chemistry
- draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forward
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- How many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forwardIndicate the product(s) B and C that are formed in the reaction: HN' OCH HC1 B + mayoritario C minoritario OCH3arrow_forwardIndicate the product(s) that are formed in the reaction: NH-NH, OCH3 -H₂O OCH3arrow_forward
- 21.38 Arrange the molecules in each set in order of increasing acidity (from least acidic to most acidic). OH OH SH NH2 8 NH3 OH (b) OH OH OH (c) & & & CH3 NO2 21.39 Explain the trends in the acidity of phenol and the monofluoro derivatives of phenol. OH OH OH OH PK 10.0 PK 8.81 PK 9.28 PK 9.81arrow_forwardidentify which spectrum is for acetaminophen and which is for phenacetinarrow_forwardThe Concept of Aromaticity 21.15 State the number of 2p orbital electrons in each molecule or ion. (a) (b) (e) (f) (c) (d) (h) (i) DA (k) 21.16 Which of the molecules and ions given in Problem 21.15 are aromatic according to the Hückel criteria? Which, if planar, would be antiaromatic? 21.17 Which of the following structures are considered aromatic according to the Hückel criteria? ---0-0 (a) (b) (c) (d) (e) (h) H -H .8.0- 21.18 Which of the molecules and ions from Problem 21.17 have electrons donated by a heteroatom?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





