Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 24.6, Problem 3bTH
To determine
The location of the tip of image which is seen by the observer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A converging (concave) mirror with a focal length of 7 cm is held 4 cm from your face.
a. Determine the image location.
Insert your solution here:
b. What is the magnification of the image?
Use the formula below
Answer parts d and e please
A raisin1 is held between a thin converging lens and its focal point. In the following questions, the raisin is never moved farther from the lens than the focal point.a. As the raisin is moved away from the lens, towards the focal point, what happens to the size of its image formed by the lens? You may use a principal ray diagram or mathematics (or both!) to support your answer.b. For any position of the raisin between the lens and the focal point, is the image always larger than the raisin, always smaller, or does it depend on the location?
Chapter 24 Solutions
Tutorials in Introductory Physics
Ch. 24.1 - On the diagram, sketch what you would see on the...Ch. 24.1 - The small bulb is replaced by three longfilament...Ch. 24.1 - The three longfilament bulbs are replaced by a...Ch. 24.1 - Predict the size and shape of the shadow that will...Ch. 24.1 - Is it possible to place the bulb in another...Ch. 24.1 - Prob. 2cTHCh. 24.1 - Prob. 2dTHCh. 24.1 - Prob. 3aTHCh. 24.1 - A student is looking at the building shown at...Ch. 24.1 - Prob. 4aTH
Ch. 24.1 - Suppose that this student were walking through the...Ch. 24.2 - The top view diagrams at right were drawn by a...Ch. 24.2 - Draw a ray diagram to determine the location of...Ch. 24.2 - Describe how you could use a ray diagram to...Ch. 24.2 - A pencil is placed in front of a plane mirror as...Ch. 24.2 - Prob. 3bTHCh. 24.3 - Prob. 1aTHCh. 24.3 - A pin is placed in front of a semicylindrical...Ch. 24.3 - Prob. 1cTHCh. 24.3 - Prob. 2aTHCh. 24.3 - A very small, very bright bulb is placed for from...Ch. 24.4 - The following are top view diagrams of solid...Ch. 24.4 - The following are top view diagrams of solid...Ch. 24.4 - The following are top view diagrams of solid...Ch. 24.4 - The following are top view diagrams of solid...Ch. 24.4 - Prob. 2THCh. 24.4 - Prob. 3aTHCh. 24.4 - Prob. 3bTHCh. 24.4 - Is the image(s) of the nail real or virtual?...Ch. 24.5 - Suppose that the bulb is placed as shown. Using...Ch. 24.5 - Prob. 1bTHCh. 24.5 - Prob. 1cTHCh. 24.5 - Prob. 1dTHCh. 24.5 - Prob. 2aTHCh. 24.5 - Treat the image produced by lens 1 as an object...Ch. 24.5 - Repeat parts a andb for the case in which lens 2...Ch. 24.6 - Reproduced below is a side view diagram of the...Ch. 24.6 - In section III of the tutorial Magnification, you...Ch. 24.6 - Two thin convex lenses and an object are arranged...Ch. 24.6 - Prob. 3bTHCh. 24.6 - Two thin convex lenses and an object are arranged...Ch. 24.6 - Prob. 3dTHCh. 24.6 - Two thin convex lenses and an object are arranged...
Knowledge Booster
Similar questions
- The thin glass shell shown in (Figure 1) has a spherical shape with a radius of curvature of 10.5 cm , and both of its surfaces can act as mirrors. A seed 3.30 mm high is placed 15.0 cm from the center of the mirror along the optic axis, as shown in the figure. C. Suppose now that the shell is reversed. Find the location of the seed's image. Express your answer in centimeters. D. Find the height of the seed's image. Express your answer in millimeters.arrow_forwardProblem 9: Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart. A 2.0 cm tall object is 15 cm in front of the 40 cm focal length lens. a. Use ray tracing to find the position and height of the image. Determine the image distance and image height by making accurate measurements on your diagram. Calculate the image height and position relative to the second lens. Compare with your ray-tracing answers in part a. b. c. Clearly mark the object, image, object distance, image distance and focal length for both the lenses. d. Show all your calculations. e. Write down the image characteristics of each image.arrow_forwardAn object, pointing upwards, is placed outside the focal point F2 of a thin diverging lens. A student is using the diagram shown above and the graphical method to predict the image of the arrow. To draw a principal ray, which direction should the student follow? O Draw a ray from point Q through F, to the lens, then bend it so it is horizontal. O Draw a horizontal ray from point Q to the lens, then bend it so it appears to diverge from F2. O Draw a ray from point P to any position on the lens, then bend it so it is horizontal. Draw a ray from point Q to the center of the lens, then bend it so it is horizontal.arrow_forward
- You will need a straightedge and a protractor for both problems on this homework. 1. Image Formation by a Cylindrical Mirror A pin is placed in front of a semi-cylindrical mirror as shown in the top-view diagram below. Location of observer 1 X Location of observer 2 Mirror Pin omor 16arrow_forwardThe same object (height = y) is placed at several different distances s to the left of the same lens (focal length = f).arrow_forwardYou are imaging a pencil through a thin, converging lens as shown in the image below. If p (the distance from the object to the center of the thin lens) is 8.15m and the focal length of the thin lens is 0.42m, how far away (in meters) from the center of the thin lens is the real image located (the real image will be on the right-side of the lens in this particular example illustrated below)? Ray 1 Ray 1 focal point Ray 2 Sis Secondary Ray 3 Ray 3 Object Converging lens focal point Principal Real image Note: Do not explicitly include units in your answer (it is understood the unit is meter). Enter only a number. If you do enter a unit, your answer will be counted wrong.arrow_forward
- A 2.5 cm high object is located 5.0 cm in front of a diverging lens of focal length 7.0 cm. Using a scaled drawing of a ray diagram, sketch the image formation. On your diagram for question 2(a), label the: optical center of the lens, principal axis, focal point of lens, iv. i. ii. iii. object distance, image distance, and vii. object height. vi. Using your diagram from question 2(a)(i), determine and state: the image distance, ii. i. the image height, and Calculate the magnification of the image. State, with reason, whether the image is real or virtual.arrow_forwardPart A A 2.6-cm-tall object is 30 cm to the left of a lens with a focal length of 15 cm . A second lens with a focal length of 5.0 cm is 40 cm to the right of the first lens. Calculate the distance between the final image and the second lens. Express your answer to two significant figures and include the appropriate units. ) ) ? d = Value cm Part B Calculate the image height. Express your answer to two significant figures and include the appropriate units. HA ? h' = Value cmarrow_forwardA 7.0 cm tall object is 15.0 cm to the left of a convex lens with a focal length of +13.0 cm. Draw a ray diagram of the setup showing the location of the image. Calculate the distance of the image from the lens. Show your work. Calculate the height of the image and identify the type of image (virtual, real, upright, inverted)arrow_forward
- An object O is placed at the location shown in front of a concave spherical mirror. Use ray tracing to determine the location and size of the reflected image. As you work, keep in mind the following properties of principal rays: Part A Trace the path of a ray emitted from the tip of the object through the focal point of the mirror and then the reflected ray that results. Start by extending the existing ray emitted from the tip of the object. Then create the reflected ray. 1. A ray parallel to the axis, after reflection, passes through the focal point Fof a concave mirror or appears to come from the (virtual) focal point of a convex mirror. 2. A ray through (or proceeding toward) the focal point Fis reflected parallel to the axis. 3. A ray along the radius through or away from the center of curvature C intersects the surface normally and is reflected back along its original path 4. A ray to the vertex Vis reflected, forming equal angles with the optic axis. Draw the vector for the…arrow_forwardFor each case below draw a ray diagram. Draw the image as an arrow and give a description of the image: (real, virtual or no image formed), (upright or inverted) and (enlarged, reduced or same size). 1.) Converging lensarrow_forwardMy dear hand written solution is not allowed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON