
Concept explainers
(a)
To find: The predicted count values.
(a)

Answer to Problem 74E
Solution: The predicted count values obtained are
Explanation of Solution
Calculation: The provided least-squares regression equation is
The time values are provided in the data as 1, 3, 5, and 7.
Substituting the values of time in the above linear regression equation, the following results are obtained:
For
For
For
For
Hence, the predicted count values obtained are
(b)
Section 1
To find: The difference between the observed and the predicted counts.
(b)
Section 1

Answer to Problem 74E
Solution: The differences obtained are
Explanation of Solution
Calculation: The observed counts are provided in the exercise as
The predicted counts obtained from part (a) are
All of the above values are for the times 1, 3, 5, and 7.
The differences
For
For
For
For
Hence, the differences obtained are
Section 2
The number of positive differences between the observed and the predicted counts.
Section 2

Answer to Problem 74E
Solution: There are three difference values that are positive as
Explanation of Solution
Clearly, the positive difference values are
Hence, three differences
The number of negative differences between the observed and the predicted counts.

Answer to Problem 74E
Solution: The negative difference is
Explanation of Solution
Clearly, the negative difference value is
(c)
Section 1
To find: The squares of the differences obtained in part (b).
(c)
Section 1

Answer to Problem 74E
Solution: The squares of the differences are
Explanation of Solution
Calculation: The differences obtained in the part (b) above are
The squares of the differences obtained are calculated as follows:
The square of the difference
The square of the difference
The square of the difference
The square of the difference
Hence, the squares of the differences obtained are
Section 2
To find: The sum of the squares of the differences obtained in Section 1 above.
Section 2

Answer to Problem 74E
Solution: The sum of the squares of the differences obtained is
Explanation of Solution
Calculation: The squares of the differences are obtained in Section 1 above as
The sum of the differences
Hence, the sum of the differences obtained is
(d)
Section 1
To find: The predicted count values for the new regression equation.
(d)
Section 1

Answer to Problem 74E
Solution: The predicted count values obtained are:
Explanation of Solution
Calculation: The provided least-squares regression equation is
The time values are provided in the data as 1, 3, 5, and 7.
Substituting the values of time in the above linear regression equation, the following results are obtained:
For
For
For
For
Hence, the predicted count values obtained are
Section 2:
To find: The difference between the observed and the predicted counts.
Section 2:

Answer to Problem 74E
Solution: The differences obtained are
Explanation of Solution
Calculation: The observed counts are provided in the exercise as:
The predicted counts obtained from section 1 above are:
In both the cases, the time is 1, 3, 5 and 7 respectively.
The differences
For
For
For
For
Hence, the differences obtained are
Section 3
To find: The number of positive differences between the observed and the predicted counts.
Section 3

Answer to Problem 74E
Solution: None of the differences are positive.
Explanation of Solution
Clearly, none of the difference values are positive. Hence, zero difference values are positive.
To find: The number of negative differences between the observed and the predicted counts.

Answer to Problem 74E
Solution: There are four negative differences as:
Explanation of Solution
Clearly, all of the values are negative. Hence, the differences
Section 4
To find: The squares of the differences obtained in section 2 of part (d).
Section 4

Answer to Problem 74E
Solution: The squares of the differences are
Explanation of Solution
Calculation: The differences obtained in the Section 2 of part (d) above are
The squares of the differences obtained are calculated as follows:
The square of the difference
The square of the difference
The square of the difference
The square of the difference
Hence, the squares of the differences obtained are
Section 5
To find: The sum of the squares of the differences obtained in Section 3 above.
Section 5

Answer to Problem 74E
Solution: The sum of the differences is
Explanation of Solution
Calculation: The squares of the differences are obtained in Section 4 above as
The sum of the differences
Hence, the sum of the differences is
(e)
To explain: The least-squares inference based on the calculations performed.
(e)

Answer to Problem 74E
Solution: The following least-squares regression is a better measure of the relationship between the log count and the time.
Explanation of Solution
The differences (residuals) are both positive and negative values whereas for the regression line
all the differences (residuals) are extremely low negative values. Thus, the residual plots for the first regression line will lie both below and above the x-axis. Also, its predicted regression line will lie much near to the observed regression line. Whereas, the residual plots for the second regression line will lie only below the x-axis, indicating it to be not a much accurate measure. Also, with such low negative differences, the predicted regression line will lie far from the observed regression line. Hence, the first line better predicts the relationship between the variables log count and the time because it gives a better approximate value of the response variable.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to the Practice of Statistics
- For a binary asymmetric channel with Py|X(0|1) = 0.1 and Py|X(1|0) = 0.2; PX(0) = 0.4 isthe probability of a bit of “0” being transmitted. X is the transmitted digit, and Y is the received digit.a. Find the values of Py(0) and Py(1).b. What is the probability that only 0s will be received for a sequence of 10 digits transmitted?c. What is the probability that 8 1s and 2 0s will be received for the same sequence of 10 digits?d. What is the probability that at least 5 0s will be received for the same sequence of 10 digits?arrow_forwardV2 360 Step down + I₁ = I2 10KVA 120V 10KVA 1₂ = 360-120 or 2nd Ratio's V₂ m 120 Ratio= 360 √2 H I2 I, + I2 120arrow_forwardQ2. [20 points] An amplitude X of a Gaussian signal x(t) has a mean value of 2 and an RMS value of √(10), i.e. square root of 10. Determine the PDF of x(t).arrow_forward
- In a network with 12 links, one of the links has failed. The failed link is randomlylocated. An electrical engineer tests the links one by one until the failed link is found.a. What is the probability that the engineer will find the failed link in the first test?b. What is the probability that the engineer will find the failed link in five tests?Note: You should assume that for Part b, the five tests are done consecutively.arrow_forwardProblem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…arrow_forwardProblem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…arrow_forward
- The scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forwardBusiness discussarrow_forwardBusiness discussarrow_forward
- I just need to know why this is wrong below: What is the test statistic W? W=5 (incorrect) and What is the p-value of this test? (p-value < 0.001-- incorrect) Use the Wilcoxon signed rank test to test the hypothesis that the median number of pages in the statistics books in the library from which the sample was taken is 400. A sample of 12 statistics books have the following numbers of pages pages 127 217 486 132 397 297 396 327 292 256 358 272 What is the sum of the negative ranks (W-)? 75 What is the sum of the positive ranks (W+)? 5What type of test is this? two tailedWhat is the test statistic W? 5 These are the critical values for a 1-tailed Wilcoxon Signed Rank test for n=12 Alpha Level 0.001 0.005 0.01 0.025 0.05 0.1 0.2 Critical Value 75 70 68 64 60 56 50 What is the p-value for this test? p-value < 0.001arrow_forwardons 12. A sociologist hypothesizes that the crime rate is higher in areas with higher poverty rate and lower median income. She col- lects data on the crime rate (crimes per 100,000 residents), the poverty rate (in %), and the median income (in $1,000s) from 41 New England cities. A portion of the regression results is shown in the following table. Standard Coefficients error t stat p-value Intercept -301.62 549.71 -0.55 0.5864 Poverty 53.16 14.22 3.74 0.0006 Income 4.95 8.26 0.60 0.5526 a. b. Are the signs as expected on the slope coefficients? Predict the crime rate in an area with a poverty rate of 20% and a median income of $50,000. 3. Using data from 50 workarrow_forward2. The owner of several used-car dealerships believes that the selling price of a used car can best be predicted using the car's age. He uses data on the recent selling price (in $) and age of 20 used sedans to estimate Price = Po + B₁Age + ε. A portion of the regression results is shown in the accompanying table. Standard Coefficients Intercept 21187.94 Error 733.42 t Stat p-value 28.89 1.56E-16 Age -1208.25 128.95 -9.37 2.41E-08 a. What is the estimate for B₁? Interpret this value. b. What is the sample regression equation? C. Predict the selling price of a 5-year-old sedan.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





