Concept explainers
(a)
To find: The comparison of two predicted
(a)
Answer to Problem 72E
Solution: The predicted dominant arm strength for a baseball player is
Explanation of Solution
Calculation: It is noted from the referred Exercises 2.70 and 2.71 that the predicted mean strength of the dominant arm
The difference in the two predicted mean strengths is calculated as:
Therefore, the difference in the mean strengths of a baseball and a non-baseball player is positive. This implies that the predicted dominant arm strength for a baseball player, who uses exercise strength, is greater than the predicted dominant arm strength for a baseball player, who uses control more than the exercise strength. Thus, it can be said that
(b)
To explain: The inference for the difference in the two predicted mean strengths.
(b)
Answer to Problem 72E
Solution: There is a positive impact of the baseball throwing exercise over control as the difference in the mean arm strengths of the baseball player and a non-baseball player is positive.
Explanation of Solution
(c)
Section 1
To find: The predicted dominant arm strengths for non-dominant strengths
(c)
Section 1
Answer to Problem 72E
Solution: The results obtained are represented in the following table:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Explanation of Solution
Calculation: The linear regression equations for a non-baseball player is:
and for a baseball player is:
From the above part (a), the dominant arm strengths when the non-dominant strength is
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The above results obtained can be represented in the form of a table as follows:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Section 2:
To find: The differences in the respective arm strengths.
Section 2:
Answer to Problem 72E
Solution: The differences are
Explanation of Solution
Calculation: The arm strengths for the non-dominant arm strengths
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
The difference in the arm strengths of baseball and the non-baseball players are calculated as follows:
For non-dominant arm strength
For non-dominant arm strength
Hence, the differences are
Section 3:
To find: A table for the results of the three calculations.
Section 3:
Answer to Problem 72E
Solution: The resultant table is obtained as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
Explanation of Solution
Also,
The differences in the estimated strengths have been calculated as:
where,
The above information can be represented in the form of a table as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
(d)
Section 1:
To explain: The summary of results obtained in part (c) of exercise 2.72.
(d)
Section 1:
Answer to Problem 72E
Solution: The results show that the baseball throwing exercise has resulted in an improvement in the dominant arm strengths of the baseball players as compared to the non-baseball players for all the three cases. That is, the difference between the two is positive for all the three cases.
Explanation of Solution
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Difference |
||
Non-Dominant Arm Strength |
||||
From the table obtained, it is ascertained that the difference in the dominant arm strengths of baseball and the non-baseball players for all the three cases of non-dominant arm strengths as
Section 2:
To explain: The reason for the non-similarity of the three differences obtained.
Section 2:
Answer to Problem 72E
Solution: The non-similarity is due to a positive relation between the dominant arm strength and the non-dominant arm strength. The more the value of non-dominant arm strength, the more will be the dominant arm strength and hence, the greater will be the difference.
Explanation of Solution
respectively. The point to be noted here is that when the non-dominant arm strength increases, the value of the dominant arm strength also improves, thus, the difference in the dominant arm strengths of baseball and the non-baseball players also improves. That is, there is a positive relation amongst the non-dominant arm strength and the difference thus obtained. The more the value of non-dominant strength, the more will be the dominant strength and the more will be the difference between the two. That is why, there is a non-similarity of the differences in all the three cases.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to the Practice of Statistics
- Please show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. Consider the following game. It costs $3 each time you roll a six-sided number cube. If you roll a 6 you win $15. If you roll any other number, you receive nothing. a) Find the expected value of the game. b) If you play this game many times, will you expect to gain or lose money?arrow_forward= 12:02 WeBWorK / 2024 Fall Rafeek MTH23 D02 / 9.2 Testing the Mean mu / 3 38 WEBWORK Previous Problem Problem List Next Problem 9.2 Testing the Mean mu: Problem 3 (1 point) Test the claim that the population of sophomore college students has a mean grade point average greater than 2.2. Sample statistics include n = 71, x = 2.44, and s = 0.9. Use a significance level of a = 0.01. The test statistic is The P-Value is between : The final conclusion is < P-value < A. There is sufficient evidence to support the claim that the mean grade point average is greater than 2.2. ○ B. There is not sufficient evidence to support the claim that the mean grade point average is greater than 2.2. Note: You can earn partial credit on this problem. Note: You are in the Reduced Scoring Period. All work counts for 50% of the original. Preview My Answers Submit Answers You have attempted this problem 0 times. You have unlimited attempts remaining. . Oli wwm01.bcc.cuny.eduarrow_forwardThere are four white, fourteen blue and five green marbles in a bag. A marble is selected from the bag without looking. Find the odds of the following: The odds against selecting a green marble. The odds in favour of not selecting a green marble The odds in favor of the marble selected being either a white or a blue marble. What is true about the above odds? Explainarrow_forward
- Please show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. 1. The probability of a soccer game in a particular league going into overtime is 0.125. Find the following: a. The odds in favour of a game going into overtime. b. The odds in favour of a game not going into overtime. c. If the teams in the league play 100 games in a season, about how many games would you expect to go into overtime?arrow_forwardexplain the importance of the Hypothesis test in a business setting, and give an example of a situation where it is helpful in business decision making.arrow_forwardA college wants to estimate what students typically spend on textbooks. A report fromthe college bookstore observes that textbooks range in price from $22 to $186. Toobtain a 95% confidence level for a confidence interval estimate to plus or minus $10,how many students should the college survey? (We may estimate the populationstandard deviation as (range) ÷ 4.)arrow_forward
- In a study of how students give directions, forty volunteers were given the task ofexplaining to another person how to reach a destination. Researchers measured thefollowing five aspects of the subjects’ direction-giving behavior:• whether a map was available or if directions were given from memory without a map,• the gender of the direction-giver,• the distances given as part of the directions,• the number of times directions such as “north” or “left” were used,• the frequency of errors in directions. Identify each of the variables in this study, and whether each is quantitative orqualitative. For each quantitative variable, state whether it is discrete or continuous. Was this an observational study or an experimental study? Explain your answer.arrow_forwardexplain the difference between the confident interval and the confident level. provide an example to show how to correctly interpret a confidence interval.arrow_forwardSketch to scale the orbit of Earth about the sun. Graph Icarus’ orbit on the same set of axesWhile the sun is the center of Earth’s orbit, it is a focus of Icarus’ orbit. There aretwo points of intersection on the graph. Based on the graph, what is the approximate distance between the two points of intersection (in AU)?arrow_forward
- The diameters of ball bearings are distributed normally. The mean diameter is 67 millimeters and the standard deviation is 3 millimeters. Find the probability that the diameter of a selected bearing is greater than 63 millimeters. Round to four decimal places.arrow_forwardSuppose you like to keep a jar of change on your desk. Currently, the jar contains the following: 22 Pennies 27 Dimes 9 Nickels 30 Quarters What is the probability that you reach into the jar and randomly grab a penny and then, without replacement, a dime? Express as a fraction or a decimal number rounded to four decimal places.arrow_forwardA box contains 14 large marbles and 10 small marbles. Each marble is either green or white. 9 of the large marbles are green, and 4 of the small marbles are white. If a marble is randomly selected from the box, what is the probability that it is small or white? Express as a fraction or a decimal number rounded to four decimal places.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman